А.К. Боярчук - Функции комплексного переменного - теория и практика (1118159), страница 81
Текст из файла (страница 81)
Доказать, ьш что любая ветвь функции 2( ) =3'П(( — аь) ' ' К а ью в полУплоскости Сч = (х б С ~ !те > 0) однолистнаа в этой полУплоскости и конфоРмно отображает ее на конечный выпуклый и-угольни. 15. Найти область, на которую функция х ~-~ м(з) = ) -'м"-)2-ы-, нГ(0) > О, — 1 < Х < 1 — — „ и-Гш отображает единичный круг К = (з Е С: !г~ < 1). Рас. 155 16. Отобразить верхнюю полуплоскость на область, укаэанную на рис. 104 (дуга АС вЂ” полу- окружность) при заданном соответствии точек м(А = аг, В = оо, С = О) -~ х(0, 1, со). 17. Отобразить верхнюю полуплоскосгь Сч = (х б С ! 1пге > 0) на область м-плоскости, указанную на рис.
105, при условии м(А=-Л, В=со, Смй, В=со) — ~х(-1,0, ),оо). Ответы Глава 2 1. а) о; б) йп — -'. 2. ю = йх. 10. В = ' "в * гол *' *+"" * 'вьюн*""*ь'в" 1 — г! о*вяо о 1 16. з~ — — — 1, и, = 1. 19. а) Окружность с центром в точке а радиуса )2; б) прямая х+у = 1; в) луч, выходящий из начала координат и образующий с положительным направлением действительной Ог г 3 о оси угол а; г) действительная ос!4 д) гипербола (х — !) — у = -„е) эллипс з 4 хо- = 1; ж) парабола у' = 2х+ 1. 20. а) !щ з' = 2; б) !т —.' = -'; в) а'+ у' = 1; г) Ке(г + 1) = (з); д) !з)4 Ке з = 1. 21.
а) Кольцо с центром в точке хо и радиусами г и Л; б) правая пачуплоскбстгч включая мнимую осел в) полоса между прямыми х = а и х = Ь; г) область, заюгюченная между окружностями (х — 1) + (р — 1) = 2 и (х — 2)' 4 (у — 2) = 8; д) правая половина единичного круга с центром в точке х = 0 22. х = 12 + 1бо. 24. а) Ни при каких а; б) =, в) ч'2; г) ни ,з! при каких а. 25. а) ! + г; б) — „', 30. 6) Отрезок (-1, -'].
31. 1) Окружность и + и'— —" = О, если с ~ 0; при с = 0 — ось и = 0; 2) окружность и + "д + —," = О, если с ~ 0; при с = 0 — ось и = 0; 3) окружность (и — —,') 4 (и+ -') = —,'; 4) луч агбго = -а; 5) прямая е = -'; 6) е = — /и/; 7) полуплоскость и > 0 без круга и + о~ — и < 0; 8) полуплоскость и < 0 без круга и'+ с'+ о < 0; 9) окружность х'+ у' — '-, = О, если с и' 0; при с = 0 — ось х = 0; 1О) окружность х'+р'+ х = О, если с и' 0; при с = 0 — ось у = О. 32.
а) Внешность круга 14 < 2; б) замкнутая полуплоскостгь расположенная слева от прямой йег = 2,5, х х 1. 34. 1) Эллипс; 2) спираль Архимеда; 3) одна ветвь |иперболы; 4) циклоиды. 35. 1) со; 2) 1; 3) оо; 4) — —,'; 5) не существует; 6) 1 1; 7) не существует; 8) не существуег; 9) не существует, 36. 1) Непрерывная; 2) непрерывная; 3) всюду разрывная; 4) непрерывная всюду, кроме х = 21; 5) непрерывная всюду, кроме прямых агба = х з . 40. 1) Аналитическая в Ст(0); 2) не аналитическая в каждой точке а б С, но дифференцируемая в точке х = 0; 3) не аналитическая в каждой точке а б С.
42. '-. 44. а) 7(з) = зт + 2гп б) 7(я) = е' + зт 4 5г + 9. Глава 3 1. Линия йею = 4соз(о(2созуо + 1) — 3, 1щгя = 4з!пуг(2созр+ 1), О < )о < 2л. 3. Круг )ю( < 1. 5. Круг (ю( < 4. 6. Полуплоскость !ам > О. 7. Круг (ю( < 1. 8. Круг ~ю~ < 1. 10. а) !щ ю > 0; б) 1щ гя > 0; в) 1щги < О. 11. ю = е' о х'. 12.
ю = -г(а — ! -о)'. 13. ю = о(а — 1) . 14. ю = 'озсб(а — а) . 15. ги = -охз 4 1. 16. ю = (1 + г) (1 — г). 17. оя = (2 + о)а + 1 — Зо. 18. 1) ао — — — 1 + Зг, В = О, й = 2, ю + 1 — Зг = 2(а + 1 — Зо); 2) ао = 2 + 2г, В = —, й = 1, ю — 2 — 2о = о(х — 2 — 2о); 3) конечной неподвижной точки нет; 4) если а = 1, то конечной неподвижной точки нет; если а ~ 1, то хо = -+:;*-г, В = юба, й = !а/, ю — -Я-*г = а (х — -Яы); 5) если а = 1, то конечной неподвижной точки нет; если а ~ 1, то хо —— , ь, В = агба, й = )а~, и — —, = а (х — —,) . 19. Уравнение семейства окружностей Аполлония относительно точек х, ь г ь т и х имеет вил ~-*; —;-'! = Л. 20. оо = йехр (з (я+агб-.'о) 1) -;=-,*-', гле й > О. Лучам, выходя- Ответы 335 < Вгд' —.
30. ю = «ДЫ 28. =,2( — ',',), 1, 28. 2, п,зз Рп«.зз 11 2 2 ю'(0) = ('8,')-. Длина дуги, соответствующей разрезу, равна 2агссоь '— ";,=-Д-; она равна зг при 2 ., ) (., 1.(ь«т)... 1 „,3 ( « — ')«(ь«-„2) — + ь«-) ь+ — „) 21 ствующих разрезам, равны 2агссоь,,', 2я — 2агссоз —, ", " . 38. =„' = ( +-' «ь«-„2 (,ьа2)«Ь««) ' ' .«1 , где 7 = а, если )3 > О, и 2 = а + л, если )3 < О. 36. 1) В полярную сетку 2 в-ь р=сопьг,В=сопьг;2)вспиралир=е ь (прия=ОвлучиВ«Ь);3)вугол а<В<)3(при а = 0 и 13 = 2я — в плоскость с разрезом по положительной части действительной оси); 4) во всю плоскость с разрезом по спирали р = е'1 5) в сектор р < 1, 0 < В < а (при а = 2я — в единичный круг с разрезом по радиусу е = О, 0 < и ( 1); 6) в область р > 1, 0 < В < а (при а = 2я — во внешность единичного круга с разрезом по лучу и = О, 1 ( и < со; 7) в область е < р < ед, 7 < В < 6 (при 6 — т = 2я эта область является концентрическим кольцом с разрезом по отрезку В = т, е < р < ед).
37. 1) В прямоугольную декартову сетку и = с, с = с; 2) в прямые, 3) в полосу 0 < с < а; 4) в полуполосу и < О, 0 < е < а; 5) в прямоугольник Ьл г, < и < )п гз, 0 < е ( 2я, 38. 1) В полуполосу — — < и < —, с > О," 2) в полосу — —, < и < —; 3) в полуполосу 0 < и < —, и > 0; 4) в полосу — —, < и < О. 41. ю = ехр 1 — (чгз — 2)) . 2 ' 1 «2-1 «Р — +2— «Р — *)+2+*' ( -'-:) «8 *+ «2 Лз ' ' «Р 2*+ 82Л2' ' 1-« Глава 4 1. а) 0; б) яь.
2. а) е(2 — е ' — 1); б) 1 + е 1(е — 2). 3. а) 1; б) 2; в) 2. 4. а) кв-'(1 + ЫЗ); «1 1 — йг«( (1+й) — «) 8,— «Ю«2 РХ 2 81 2. 1 8 «22 « шим из точки ю = 0 в полуплоскости Кею > О, соответствуют в з-плоскости луги кружностей, лежащие внугри круга )х) < 1 и проходящие через точки аз, аз. лежашим в полуплоскости Кею > 0 полуокружностям с центром в точке ю = 0 соответствуют нахоляшиеся внутри круга )з( < 1 дуги окружностей Аполлония относительно точек аз и аз. 21. юь = —,-2--;1, В = 1~ ', 22.
1) ю = )2 еь нз — — '=-, 2) нг — ь — — — е' йз-'-=-; 3) ю = а~ —;, ', где а — действительное число и ~а~ < )2. 23. = е'Р-Я~-, где у« = 21 — агд-*~ф~-, а = 1 * "2 1-* 21 И 1*12нз 02~ 1 Д:2 24. ю = ю '* '~~,' ', р = 2, ' . 27. 1) )гп) < „— '. Область ограничена уллиненной П 22 2) зпициклоидой, т.е.
траекторией точки, находящейся на расстоянии пзй от центра круга радиуса —, катяшегося извне по кругу радиуса '*; 2) )гп( < —. В первом случае внешность н Нз,*-о, 1 единичного круга, а во втором случае его внутренность, отобрюкаются на внешность Рукоро- 336 ( О, если (х(< 1, 15. а) 7(2) = ~ б) у(а) = если (з! > 1; если (г+ 2 ~ < -', если (2~ > 1, если 2 Е Р.
! ! зр! 2*-)5 252*2-)-5 оз)' Глава 5 Глава 6 1 ° е(з) = ~(-1)";)Ц)зт 2 Е К'. 2. У)(2) = 1п!з(+ 2яз зВ ! ага е, 72(2) = 1п !2(+ ! ага 2, з б Р,. =О 6. а+ 2' ,файф'-'!) 22 +'. 7. Нет. 9. Сумма ряда совпадает с з при О < о < (з( < ! и соответственно с —,' при (з! > 1; нет. ! . а) ); б) 1; в) 1; г) 523; д) 1. 2. а) (з + з( < 1; б) ,'2 — 1 — 6 < 3; в) (2( < 1; г) ~з( < 1; д) )2( < -'; е) )з! < -,'; ж) !4 < +сю; з) если а — целое неотрицательное, то (2( < +со; для остальных а — круг )2) < 1.
3. а) Сходится во всех точках окружности (а( = 1; б) сходится во всех точках окРУзкности )з( = о, кРоме з = о ! в) схоДитсЯ во всех точках окРУжности )2! = 1, кРоме з = — 1 ! ! и 2 = —, ю ! —,; г) сходится во всех точках окружности )2~ = 1, кроме 2 = 1 и 2 = Ы; д) сходится оз во всех точках окружности )з( = 1, кроме 2 = 1 и 2 = ю)2 4. а) 2 (пт))ы-+-')з~", (2! < 1; =о б) 2 ,'(- 1)"(2' +222"ю — 22" 2'"), (2~ < -'; в) 2 (и + 1)(2'" — а'"+'), (з! < 1; г) ~ (- 1)"22" — ' =о =о =о ~2~ < +ос.
6. а) ~ 11+ 2+ ... + — !) — *„, ~2( < 1; б) ',) а)2 '),,*,— и, )2~ < +ос. 7. а) 1+ 22+ =2 =о + 'о з' + ..., 12~ < 1; б) 1 + -*, — д + ., )г~ < 1. В. а) 2 (- 1)" =,„ ,, ~4 < 1; б) ! — 2 3 + =! + —,,",, — ...*',, + ..., ~2( < +со; в) т2 ',",'„",,) 2'", )4 < 1. 13. а) Пустое множество; б) кольцо =О О < )4 < сю при (а( > 1 и пустое множество при )а/ < 1; в) кольцо !', < (2( < (а! цри (а! > 1 и ..!,!О!.55.,),'( — ', т(с °,'";,',!)),-~г), ! =о б) ~; -2(=,"2-„- — ~ 2"+' при О < !2(< 1 или ~ -(сц~;;+ ~, '— '„при (2(> 1; в) ~ (-!)"+'пз" при / (2) < 1 или 2 ' (г-'~3;")хО при (а! > 1. 15. а) о 1 2:т-+ 2, -";.зт2'"); б) о д — „т — , 'в) —,'— =о =! =О =2 -22 а„зз" ', Где а„= ~~, „)т )(и Е ()(,' г) -42~ -,тг-т 22 а„а'" ', а„= 2,';- ьз„-)Уп Е Я.
=! ь=! =! =! Ь=з 38. а) Правильная точка; б) полюс 5-го порядка; в) простой полюс; г) полюс 3-зо порядка; д) существенно особая точка. 1Э. а) Существенно особая точка; б) существенно особая точка; в) полюс 4-го порядка; г) нуль 4-го поряака. 20. а) г = ! — существенно особая точка, 2 = = 2(оя! (я Е У,) — простые пояюсы, 2 = оо — неизолированная особая точка (предельная точка множества полюсов); б) з = — — + яя ((о Е У) — простые полюсы, 2 = сю — неизолированная особая точка; в) з = (2(О+ 1)я ! (й б 2) — простые полюсы, з = со — неизолированная особая точка.