А.С. Городецкий - Лекции по дифференциальным уравнениям (1114447), страница 7
Текст из файла (страница 7)
. . + an (t)x = f (t)L=(1)dndn−1d+ a1 n−1 + . . . + an−1 + an ,ndtdtdtLx = f. ᫨ xç — ç á⮥ à¥è¥¨¥ ãà ¢¥¨ï (1), â® «î¡®¥ ¥£® à¥è¥¨¥ ¥áâì á㬬 xç ¨ ¥ª®â®à®£®à¥è¥¨¥ ᮮ⢥âáâ¢ãî饣® ®¤®à®¤®£® ãà ¢¥¨ï Lx = a. ᫨ x1 — ç á⮥ à¥è¥¨¥ ãà ¢¥¨ï Lx = f1 ,x2 — ç á⮥ à¥è¥¨¥ ãà ¢¥¨ï Lx = f2 ,...xk — ç á⮥ à¥è¥¨¥ ãà ¢¥¨ï Lx = fk ,â® (x1 + . .
. + xk ) — à¥è¥¨¥ ãà ¢¥¨ï Lx = f1 + . . . + fk .2. ¥â®¤ ¥®¯à¥¤¥«¥ëå ª®íä䍿¨¥â®¢.¥®à¥¬ . ᫨ f (t) ¥áâì á㬬 ª¢ §¨¬®£®ç«¥®¢, â® «î¡®¥ à¥è¥¨¥ ãà ¢¥¨ï (1) ¥áâì á㬬 ª¢ §¨¬®£®ç«¥®¢.®ª § ⥫ìá⢮. ®áâ â®ç® ¤®ª § âì ⥮६㠢 á«ãç ¥, ª®£¤ f (t) ¥áâì ª¢ §¨¬®£®ç«¥ (â. ¥.äãªæ¨ï ¢¨¤ eλt p(t)). DZãáâì P m — ¬®¥á⢮ ¢á¥å ª¢ §¨¬®£®ç«¥®¢ á ¯®ª § ⥫¥¬ λ á⥯¥¨áâண® ¬¥ìè¥ m, ⮣¤ dim P m = m. L(P m) ⊂ P m .
¥¬¬ 1. ᫨ λ — ¥ ï¥âáï ª®à¥¬ å à ªâ¥à¨áâ¨ç¥áª®£® ãà ¢¥¨ï ¤¨ää¥à¥æ¨ «ì®£®®¯¥à â®à L, â® L(P m) = P m .®ª § ⥫ìá⢮. ®§ì¬¥¬ ¡ §¨á ¢ P m : {eλt, teλt , t2 eλt , . . . , tm−1eλt }. ¬¥â¨¬, çâ® L(tl eλt ) =F (λ)tl eλt + Q(t)eλt , £¤¥ deg Q < l, F — å à ªâ¥à¨áâ¨ç¥áª¨© ¬®£®ç«¥ ¨ F (λ) 6= 0. â® § ç¨â, ç⮬ âà¨æ ¢ í⮬ ¡ §¨á¥ ï¥âáï âà¥ã£®«ì®©, â.
¥. ¤¥â¥à¬¨ â à ¢¥ ¯à®¨§¢¥¤¥¨î ¤¨ £® «ìëåí«¥¬¥â®¢. ª ª ª F (λ) 6= 0, â® ®¯¥à â®à L : P m → P m ¥áâì ¨§®¬®à䨧¬. LP m = P m . «¥¤á⢨¥. áᬮâਬ ãà ¢¥¨¥ (1), £¤¥ f (t) = eλtP (t), ¯à¨ç¥¬ λ ¥ ï¥âáï ª®à¥¬ å à ªâ¥à¨áâ¨ç¥áª®£® ¬®£®ç«¥ . ®£¤ áãé¥áâ¢ã¥â ç á⮥ à¥è¥¨¥ ãà ¢¥¨ï (1) ¢¨¤ eλt Q(t), £¤¥Q ≤ deg P .¥¬¬ 2.
DZãáâì λ ¥áâì ª®à¥ì å à ªâ¥à¨áâ¨ç¥áª®£® ¬®£®ç«¥ ¤¨ää¥à¨æ¨ «ì®£® ®¯¥à â®à Lªà â®á⨠s. ®£¤ L(P m ) = P m−s .®ª § ⥫ìá⢮. L = L1( dtd − λ)s , ¯à¨ç¥¬ L1P m = P m ¤«ï «î¡®£® m. ®â¨¬ ¯®ª § âì, çâ® LP m =ddP. ®áâ â®ç® ¯®ª § âì, çâ® ( dt− λ)s (P m ) = P m−s . «ï í⮣® ¤®ª ¥¬, çâ® ( dt− λ)(P m ) = P m−1 .믮«¨¬ ï¢ãî ¯à®¢¥àªãm−s(d− λ)(tl eλt ) = ltl−1 eλt + λeλt tl − λtl eλt = ltl−1 eλt .dt37¥ªæ¨ï 15http://www.mexmat.net/«¥¤á⢨¥. ᫨ λ ¥áâì ª®à¥ì å à ªâ¥à¨áâ¨ç¥áª®£® ãà ¢¥¨ï ªà â®á⨠s, ¨ f (t) = eλt p(t), â®ã ãà ¢¥¨ï (1) ¥áâì ç á⮥ à¥è¥¨¥ ¢¨¤ Q(t)eλt , deg Q < m + s.
®«¥¥ ⮣® áãé¥áâ¢ã¥â ç á⮥à¥è¥¨¥ ¢¨¤ q(t)ts eλt , deg q(t) < m.®ª § ⥫ìá⢮. § L(P m+s) = P m á«¥¤ã¥â ¯¥à¢ ï ç áâì ã⢥थ¨ï.Q(t)eλt = ts q(t)eλt + R(t)eλt , £¤¥R < s, deg q < m.DZ®áª®«ìªã λ — ª®à¥ì å à ªâ¥à¨áâ¨ç¥áª®£® ¬®£®ç«¥ ªà â®á⨠s, L(R(t)eλt ) = 0. «¥¤®¢ ⥫ì®,ts q(t)eλt — ⮥ à¥è¥¨¥. 3.¥â®¤ ª®¬¯«¥ªáëå ¬¯«¨âã¤.DZãáâì à áᬠâਢ ¥âáï ãà ¢¥¨¥ á ¢¥é¥á⢥묨 ª®íä䍿¨¥â ¬¨ Lx = f .
®¯ãá⨬, çâ® ϕ —ª®¬¯«¥ªá®§ ç ï äãªæ¨ï, ïîé ïáï ç áâë¬ à¥è¥¨¥¬ á«¥¤ãî饣® ãà ¢¥¨ï: Lx = h, ℜh =f. í⮬ á«ãç ¥ ℜϕ ¥áâì ç á⮥ à¥è¥¨¥ ãà ¢¥¨ï§ ç¨â L(ℜϕ) = f .Lx = f .ℜ(Lϕ) = ℜ(h),¥©á⢨⥫ì®,Lϕ = h,§ ç¨âDZਬ¥à ª®«¥¡ ⥫ì ï á¨á⥬ á ¯¥à¨®¤¨ç¥áª®© ¢¥è¥© ᨫ®©.:4.ẍ + ω 2 x = 0 — ãà ¢¥¨¥ £ ମ¨ç¥áª®£® ®á樫«ïâ®à .ẍ + ω 2 x = M cos νt — å à ªâ¥à¨áâ¨ç¥áª®¥ ãà ¢¥¨¥. ᫨ λ2 + ω2 = 0, § ç¨â λ = ±ω. áᬮâਬ ¢á¯®¬®£ ⥫쮥 ãà ¢¥¨¥:ẍ + ω 2 x = M eiνt .§¢¥áâ®, çâ® áãé¥áâ¢ã¥â ç á⮥ à¥è¥¨¥ ¢¨¤ Ceiνt , ¥á«¨ ν 2 6= ω2 . ¬¯«¨â㤮©.C=â.
¥. ϕ(t) = ωMe−νiνt22—ç á⮥ à¥è¥¨¥ (*). §ë¢ ¥âáï ª®¬¯«¥ªá®©M cos νt,ω2 − ν 2M cos νt+ C1 cos (C2 + ωt).ω2 − ν 2— ¢ëã¤¥ë¥ ª®«¥¡ ¨ï.C1 cos (C2 + ωt) — ᢮¡®¤ë¥ ª®«¥¡ ¨ï. ᫨ ν = ω, ẍ + ω2 x = M eiωt , â® áãé¥áâ¢ã¥âM cos νtω 2 −ν 2CM,ω2 − ν 2xç = ℜϕ(t) =x®¡é =(∗)ç á⮥ à¥è¥¨¥ ϕ(t) = C + eiωt .ϕ̇ = Ceiωt + Ct(iω)eiωt ,ϕ̈ = 2(iω)Ceiωt − Ctω 2 eiωt ,MC=,2iωM teiωtϕ=,2iωM sin ωtxç = ℜϕ =,2ωM sin ωtx®¡é =+ C1 cos (C2 + ωt).2ω38¥ªæ¨ï 15http://www.mexmat.net/«¥¤á⢨¥.(1) ᫨ α+iβ ¥áâì ª®à¥ì å à ªâ¥à¨áâ¨ç¥áª®£® ãà ¢¥¨ï ¤«ï ¢¥é¥á⢥®£® ãà ¢¥¨ïªà â®á⨠s, ¨ f (t) = eαt P (t) cos βt, â® áãé¥áâ¢ã¥â ç á⮥ à¥è¥¨¥ ¢¨¤ eαt ts (Q1 (t) cos βt + Q2 (t) sin βt),£¤¥ Qi < deg P .5.0.¥â®¤ ¢ ਠ樨 ¯®áâ®ïëå.DZãáâì {ϕ1 , .
. . , ϕn } — (ä㤠¬¥â «ì ï á¨á⥬ à¥è¥¨©) ¤«ï ®¤®à®¤®£® ãà ¢¥¨ï Lx =x®¤®à = C1 ϕ1 + C2 ϕ2 + . . . + Cn ϕn .DZ®¯à®¡ã¥¬ ©â¨ ãá«®¢¨¥ ¢ ¢¨¤¥ xç = C1 (t)ϕ1 + C2 (t)ϕ2 + . . . + Cn (t)ϕn .®£¤ xç = C1 (t)ϕ1 + C2 (t)ϕ2 + . . . + Cn (t)ϕnẋç = C1 (t)ϕ̇1 + . . . + Cn (t)ϕ̇n + Ċ1 (t)ϕ1 + . . . + Ċn (t)ϕn . «®¨¬ ãá«®¢¨¥, çâ® Ċ1 (t)ϕ1 + . .
. + Ċn (t)ϕn = 0, ⮣¤ ẍç = C1 (t)ϕ̈1 + . . . + Cn (t)ϕ̈n + Ċ1 (t)ϕ̇1 + . . . + Ċn (t)ϕ̇n . «®¨¬ ãá«®¢¨¥, çâ® Ċ1 (t)ϕ̇1 + . . . + Ċn (t)ϕ̇n . â ª ¤ «¥¥ . . .(n−1)x(n−1) = C1 (t)ϕ1(n−2)+ . . . + Cn (t)ϕ̇(n−1)+ Ċ1 (t)ϕ1n(n)(n−1)x(n) = C1 (t)ϕ1 + . . . + Cn (t)ϕ̇(n)n + Ċ1 (t)ϕ1(n−2)Ċ1 (t)ϕ1(n−2)+ .
. . + Ċn (t)ϕn®¬®¨¬ áâப¨+ . . . + Ċn (t)ϕ(n−2)n+ . . . + Ċn (t)ϕ(n−1).n= 0.xç = C1 (t)ϕ1 + C2 (t)ϕ2 + . . . + Cn (t)ϕnẋç = C1 (t)ϕ̇1 + . . . + Cn (t)ϕ̇n + Ċ1 (t)ϕ1 + . . . + Ċn (t)ϕnẍç = C1 (t)ϕ̈1 + . . . + Cn (t)ϕ̈n + Ċ1 (t)ϕ̇1 + . . . + Ċn (t)ϕ̇n...x(n−1) =(n−1)C1 (t)ϕ1(n−2)+ . .
. + Cn (t)ϕ̇(n−1)+ Ċ1 (t)ϕ1n(n)(n−1)x(n) = C1 (t)ϕ1 + . . . + Cn (t)ϕ̇(n)n + Ċ1 (t)ϕ1+ . . . + Ċn (t)ϕ(n−2)n+ . . . + Ċn (t)ϕ(n−1).n ª®íä䍿¨¥âë an , an−1 , an−2 , . . . , a1 , 1 ᮮ⢥âá⢥® ¨ á«®¨¬ í⨠áâப¨. DZ®«ã稬, çâ®:(n−1)f (t) = Lxç = C1 Lϕ1 + C2 Lϕ2 + . . . + Cn Lϕn + Ċ1 ϕ1 Ci (t)Lϕi = 0.39+ . .
. + Ċn ϕ(n−1).n¥ªæ¨ï 15http://www.mexmat.net/ ¨â®£¥ ¯®«ãç ¥¬ ãá«®¢¨¥ {Ci}:Ċ1 ϕ1 + . . . + Ċn ϕn = 0Ċ1 ϕ̇1 + . . . + Ċn ϕ̇n = 0...(n−2)Ċ1 ϕ1(n−1)Ċ1 ϕ1+ . . . + Ċn ϕ(n−2)=0n+ . . . + Ċn ϕ(n−1)= f (t).nDZਠ䨪á¨à®¢ ®¬ t0 ®¯à¥¤¥«¨â¥«ì í⮩ á¨áâ¥¬ë ¥áâì W [ϕ1 , . . . , ϕn ](t0 ) 6= 0. ¨â®£¥ ¯®«ãç ¥¬¯à®áâãî á¨á⥬ã:Ċi = gi (t), i = 1, . . .
, n.6.DZਬ¥à: ẍ + x = f (t). áᬮâਬ ẍ + x = 0.x®¤ = C1 sin t + C2 cos t.饬 à¥è¥¨ï ãà ¢¥¨ï ẍ + x = f (t) ¢ ¢¨¤¥ C1 sin t + C2 cos t. ç¨â,Ċ1 sin t + C2 cos t = 0Ċ1 cos t − C2 sin t = f (t),= sin tZt0=Z0Ċ1 = f (t) cos tĊ2 = −f (t) sin t),(C1 (t) =Rtf (τ ) cos τ dτ + C1RtC2 (t) = − 0 f (τ ) sin τ dτ + C2 ,0x = C1 (t) sin t + C2 (t) cos t =Z tf (τ ) cos τ dτ − cos tf (τ ) sin τ dτ + C̄1 sin t + C̄2 cos t =0tf (τ )(sin t cos τ − cos t sin τ )dτ + C̄1 sin t + C̄2 cos t =Z t=f (τ ) sin t − τ dτ + C̄1 sin t + C̄2 cos t.040.