Главная » Просмотр файлов » Е.Е. Тыртышников - Матричный анализ и линейная алгебра

Е.Е. Тыртышников - Матричный анализ и линейная алгебра (1113045), страница 18

Файл №1113045 Е.Е. Тыртышников - Матричный анализ и линейная алгебра (Е.Е. Тыртышников - Матричный анализ и линейная алгебра) 18 страницаЕ.Е. Тыртышников - Матричный анализ и линейная алгебра (1113045) страница 182019-04-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 18)

. , x1 , x0 ≡ 1.(2) Ìíîæåñòâî m × n-ìàòðèö ñ ôèêñèðîâàííûìè ðàçìåðàìè m è n. äàííîì ñëó÷àå ñëîæåíèå âåêòîðîâ îïðåäåëÿåòñÿ êàê ñëîæåíèå ìàòðèö, à óìíîæåíèå âåêòîðà íà ÷èñëî êàê óìíîæåíèå ìàòðèöû íà ÷èñëî.Îáîçíà÷èì ÷åðåç E kl = [(E kl )ij ] ìàòðèöó ðàçìåðîâ m × n ñ ýëåìåíòàìè âèäà1, i = k, j = l,kl(E )ij =0,èíà÷å.Òàêèõ ìàòðèö ðîâíî mn è î÷åâèäíî, ÷òî âñå ïðîñòðàíñòâî m × n-ìàòðèö ÿâëÿåòñÿèõ ëèíåéíîé îáîëî÷êîé.(3) Ìíîæåñòâî âñåõ ðåøåíèé îäíîðîäíîé ñèñòåìû ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé Ax = b.Åñëè ðàíã m×n-ìàòðèöû A ðàâåí r, òî ôóíäàìåíòàëüíàÿ ñèñòåìà ðåøåíèé äàííîéîäíîðîäíîé ñèñòåìû ñîäåðæèò n − r âåêòîðîâ, à âñå ìíîæåñòâî ðåøåíèé ñîâïàäàåòñ èõ ëèíåéíîé îáîëî÷êîé.Äàííîå ëèíåéíîå ïðîñòðàíñòâî íàçûâàåòñÿ íóëü-ïðîñòðàíñòâîì, èëè ÿäðîì ìàòðèöû A.

Îáîçíà÷åíèå: ker A (â íåêîòîðûõ êíèãàõ null A).(4) Ìíîæåñòâî âñåõ ñòîëáöîâ âèäà y = Ax (äëÿ çàäàííîé ìàòðèöû A).Ýòî õîðîøî çíàêîìîå íàì ìíîæåñòâî, ñîâïàäàþùåå ñ ëèíåéíîé îáîëî÷êîé ñòîëáöîâ ìàòðèöû A. Îíî íàçûâàåòñÿ îáðàçîì ìàòðèöû A. Îáîçíà÷åíèå: imA.11.4Áàçèñ è ðàçìåðíîñòüÏóñòü V êîíå÷íîìåðíîå ïðîñòðàíñòâî. Ïî îïðåäåëåíèþ, îíî ÿâëÿåòñÿ ëèíåéíîé îáîëî÷êîé êîíå÷íîãî ÷èñëà ñâîèõ âåêòîðîâ:V = L(a1 , . . . , an ).Ïîíÿòèÿ ëèíåéíî çàâèñèìîé è ëèíåéíî íåçàâèñèìîé ñèñòåì âåêòîðîâ â àáñòðàêòíîìñëó÷àå íè÷åì íå îòëè÷àþòñÿ îò òåõ æå ïîíÿòèé â ñëó÷àå ìàòðèö-ñòîëáöîâ.

Òî æå ñïðàâåäëèâî â îòíîøåíèè áàçèñà è ðàçìåðíîñòè:• V ìîæíî ïðåäñòàâèòü êàê ëèíåéíóþ îáîëî÷êó íåêîòîðîé ëèíåéíî íåçàâèñèìîéïîäñèñòåìû âåêòîðîâ a1 , . . . , an ;Å. Å. Òûðòûøíèêîâ77• áàçèñ â ïðîñòðàíñòâå V îïðåäåëÿåòñÿ êàê ëþáàÿ ëèíåéíî íåçàâèñèìàÿ ñèñòåìàâåêòîðîâ, äëÿ êîòîðîé V ÿâëÿåòñÿ ëèíåéíîé îáîëî÷êîé; ëþáûå äâà áàçèñà â Vñîäåðæàò îäèíàêîâîå ÷èñëî âåêòîðîâ; ÷èñëî âåêòîðîâ â áàçèñå íàçûâàåòñÿ ðàçìåðíîñòüþ ïðîñòðàíñòâà V è îáîçíà÷àåòñÿ dim V ;• ëþáóþ ëèíåéíî íåçàâèñèìóþ ñèñòåìó âåêòîðîâ èç V ìîæíî äîñòðîèòü äî áàçèñàV ; áîëåå òîãî, ýòî ìîæíî ñäåëàòü ñ ïîìîùüþ ÷àñòè âåêòîðîâ a1 , .

. . , an .Äîêàçàòåëüñòâà ýòèõ ïðåäëîæåíèé ïîâòîðÿþò äîêàçàòåëüñòâà èç Ëåêöèè 3 äëÿ ÷àñòíîãî ñëó÷àÿ ëèíåéíûõ ïðîñòðàíñòâ êîãäà ïîä âåêòîðàìè ïîäðàçóìåâàëèñü ìàòðèöûñòîëáöû.11.5Ïîäïðîñòðàíñòâà ëèíåéíîãî ïðîñòðàíñòâàÍåïóñòîå ìíîæåñòâî W ⊂ V íàçûâàåòñÿ ïîäïðîñòðàíñòâîì ëèíåéíîãî ïðîñòðàíñòâà V ,åñëè îíî ñàìî ÿâëÿåòñÿ ëèíåéíûì ïðîñòðàíñòâîì îòíîñèòåëüíî îïåðàöèé, äåéñòâóþùèõâ V . ßñíî, ÷òî äëÿ òîãî ÷òîáû W áûëî ïîäïðîñòðàíñòâîì, íåîáõîäèìî è äîñòàòî÷íî,÷òîáû äëÿ ëþáûõ âåêòîðîâ a, b ∈ W è ëþáîãî ÷èñëà α èìåëè ìåñòî âêëþ÷åíèÿ a+b ∈ Wè αa ∈ W .Åñëè âåêòîðû a1 , .

. . , an ïðèíàäëåæàò ïîäïðîñòðàíñòâó W , òî L(a1 , . . . , an ) ⊂ W.Ðàññìîòðèì ìíîæåñòâî V âñåõ ñâîáîäíûõ âåêòîðîâ íà ïëîñêîñòè ñ ñèñòåìîé êîîðäèíàò ñ íà÷àëîì â òî÷êå O. Ïîñêîëüêó êàæäûé ñâîáîäíûé âåêòîð ïîðîæäàåòñÿîäíèì è òîëüêî îäíèì ðàäèóñ-âåêòîðîì, ëþáîå ïîäìíîæåñòâî ñâîáîäíûõ âåêòîðîâ ìîæÏÐÈÌÅÐ.−→íî îòîæäåñòâëÿòü ñ ïîäìíîæåñòâîì ðàäèóñ-âåêòîðîâ OA èëè èõ êîíöîâ òî÷åê A.Ìíîæåñòâî V , î÷åâèäíî, ÿâëÿåòñÿ ëèíåéíûì ïðîñòðàíñòâîì.

Ëþáàÿ ïðÿìàÿ, ïðîõîäÿùàÿ ÷åðåç íà÷àëî êîîðäèíàò, ÿâëÿåòñÿ ïîäïðîñòðàíñòâîì â V .  òî æå âðåìÿ, åñëè l ïðÿìàÿ, íå ïðîõîäÿùàÿ ÷åðåç íà÷àëî êîîðäèíàò, òî îíà ïîäïðîñòðàíñòâîì íå ÿâëÿåòñÿ:−→−→−→ïóñòü A, B ∈ l è OC = OA + OB ; ÿñíî, ÷òî C ∈/ l.Çàäà÷à.Äîêàæèòå, ÷òî ëèíåéíîå ïðîñòðàíñòâîRníåëüçÿ ïðåäñòàâèòü â âèäå îáúåäèíåíèÿ êî-íå÷íîãî ÷èñëà ìíîæåñòâ, êàæäîå èç êîòîðûõ íå ñîâïàäàåò ñ11.6Rnè ÿâëÿåòñÿ åãî ïîäïðîñòðàíñòâîì.Ñóììà è ïåðåñå÷åíèå ïîäïðîñòðàíñòâÏóñòü P è Q ïîäïðîñòðàíñòâà ëèíåéíîãî ïðîñòðàíñòâà V .

Ïîä ñóììîé P + Q ïîíèìàåòñÿ ìíîæåñòâî âñåõ âåêòîðîâ âèäà w = p + q , ãäå p ∈ P , q ∈ Q. Ïîä ïåðåñå÷åíèåìP ∩ Q ïîíèìàåòñÿ îáû÷íîå ïåðåñå÷åíèå ìíîæåñòâ.Óòâåðæäåíèå. Ìíîæåñòâà P + Q è P ∩ Q ÿâëÿþòñÿ ïîäïðîñòðàíñòâàìè â V .Äîêàçàòåëüñòâî.(1) Ðàññìîòðèì ïðîèçâîëüíóþ ëèíåéíóþ êîìáèíàöèþ âåêòîðîâ w1 , w2 ∈ P + Q. Ïîîïðåäåëåíèþ ìíîæåñòâà P + Q, w1 = p1 + q1 è w2 = p1 + q2 , ãäå p1 , p2 ∈ P è q1 , q2 ∈ Q.Òîãäàα1 w1 + α2 w2 = (α1 p1 + α2 p2 ) + (α1 q1 + α2 q2 ) ∈ P + Q,ïîñêîëüêó âåêòîð â ïåðâîé ñêîáêå ïðèíàäëåæèò P , à âåêòîð âòîðîé ñêîáêè ïðèíàäëåæèòQ (P è Q ïîäïðîñòðàíñòâà, ïîýòîìó îíè ñîäåðæàò âñå ëèíåéíûå êîìáèíàöèè ñâîèõâåêòîðîâ).(2) Àíàëîãè÷íî, ðàññìîòðèì ëèíåéíóþ êîìáèíàöèþ âåêòîðîâ w1 , w2 ∈ P ∩ Q:αw1 + α2 w2 ∈ Pè îäíîâðåìåíííîα1 w1 + α2 w2 ∈ Q78Ëåêöèÿ 11⇒αw1 + α2 w2 ∈ P ∩ Q.

2Çàìåòèì, ÷òî ëþáûå äâà ïîäïðîñòðàíñòâà èìåþò íåïóñòîå ïåðåñå÷åíèå: êàæäîå èçíèõ ñîäåðæèò, ïî êðàéíåé ìåðå, íóëåâîé âåêòîð.Òåîðåìà Ãðàññìàíà. Ïóñòü W1 è W2 êîíå÷íîìåðíûå ïîäïðîñòðàíñòâà ëèíåéíîãîïðîñòðàíñòâà V . Òîãäàdim(W1 + W2 ) = dim W1 + dim W2 − dim(W1 ∩ W2 ).Äîêàçàòåëüñòâî. Ðàññìîòðèì áàçèñ g1 , . .

. , gr ïîäïðîñòðàíñòâà W1 ∩ W2 è äîïîëíèìåãî ñíà÷àëà äî áàçèñà W1g1 , . . . , gr , p1 , . . . , pk ,r + k = dim W1 ,g1 , . . . , gr , q1 , . . . , qm ,r + m = dim W2 .à çàòåì äî áàçèñà W2Î÷åâèäíî,W1 + W2 = L(g1 , . . . , gr , p1 , . . . , pk , q1 , . . . , qm ).Ïîýòîìó îñòàåòñÿ äîêàçàòü ëèíåéíóþ íåçàâèñèìîñòü âåêòîðîâ, ïîðîæäàþùèõ äàííóþëèíåéíóþ îáîëî÷êó. Ïóñòüα1 g1 + . . . + αr gr + β1 p1 + . .

. + βk pk + γ1 q1 + . . . + γm qm = 0.Îòñþäàα1 g1 + . . . + αr gr + β1 p1 + . . . + βk pk = −(γ1 q1 + . . . + γm qm ) ∈ W1 ∩ W2 .Ïîñêîëüêó W1 ∩ W2 = L(g1 , . . . , gr ), äëÿ êàêèõ-òî êîýôôèöèåíòîâ δ1 , . . . , δr èìååìδ1 g1 + . . . + δr gr = −(γ1 q1 + . . . + γm qm ).Ýòî ðàâíîñèëüíî ðàâåíñòâóδ1 g1 + . . . + δr gr + γ1 q1 + . . . + γm qm = 0⇒δ1 = . . . = δr = γ1 = .

. . = γm = 0 ⇒Çàäà÷à.α1 = . . . = αr = β1 = . . . = βm = 0. 2Íàéäèòå ðàçìåðíîñòü ñóììû ïîäïðîñòðàíñòâàâ êàæäîé ñòðîêå è ïîäïðîñòðàíñòâàn × n-ìàòðèön × n-ìàòðèö ñ íóëåâîé ñóììîé ýëåìåíòîâñ íóëåâîé ñóììîé ýëåìåíòîâ â êàæäîì ñòîëáöå.Ëåêöèÿ 1212.1Ðàçëîæåíèå ïî áàçèñóÏóñòü V âåùåñòâåííîå ëèíåéíîå ïðîñòðàíñòâî ðàçìåðíîñòè n è f1 , . . . , fn íåêîòîðûéåãî áàçèñ.

Òîãäà ëþáîé âåêòîð v ∈ V èìååò îäíîçíà÷íîå ðàçëîæåíèå ïî äàííîìó áàçèñóv = x1 f1 + . . . + xn fn .Êîýôôèöèåíòû x1 , . . . , xn íàçûâàþòñÿ êîîðäèíàòàìè âåêòîðà v â äàííîì áàçèñå. Ïîíÿòíî, ÷òî ìåæäó ýëåìåíòàìè ëèíåéíîãî ïðîñòðàíñòâà V è ìíîæåñòâà ñòîëáöîâ Rn èìååòñÿâçàèìíî-îäíîçíà÷íîå ñîîòâåòñòâèåx1v ↔ x =  ...

.xnÏðè âûáîðå äðóãîãî áàçèñà g1 , . . . , gn âîçíèêàåò åùå îäíî âçàèìíî-îäíîçíà÷íîå ñîîòâåòñòâèå ìåæäó òåìè æå ìíîæåñòâàìè:y1v = y1 g1 + . . . + yn gn ↔ y =  . . .  .ynÐàññìîòðèì ðàçëîæåíèÿf1 = p11 g1 + . . . + pn1 gn ,.........fn = p1n g1 + . . . + pnn gn(∗)è ââåäåì n × n-ìàòðèöó P = [pij ]. Ïîäñòàâèâ (∗) â ðàçëîæåíèå âåêòîðà v ïî áàçèñóf1 , . . . , fn , íàõîäèìy = P x.(∗∗)Ýòî ñîîîòíîùåíèå ïîçâîëÿåò ïåðåõîäèòü îò êîîðäèíàò âåêòîðà â áàçèñå {fi } ê êîîðäèíàòàì òîãî æå âåêòîðà â áàçèñå {gi }. ñèëó (∗∗), ìàòðèöó P ëîãè÷íî áûëî áû íàçûâàòü ìàòðèöåé ïåðåõîäà îò áàçèñà {fi }ê áàçèñó {gi }. Íî îíà âñå æå íàçûâàåòñÿ îáû÷íî ìàòðèöåé ïåðåõîäà îò áàçèñà {gi } êáàçèñó {fi }: åñëè fi è gi ñòîëáöû èç êîîðäèíàò ñîîòâåòñòâóþùèõ âåêòîðîâ â êàêîì-òîòðåòüåì áàçèñå, òî, ñîãëàñíî (∗), [f1 , .

. . , fn ] = [g1 , . . . , gn ]P (îòñþäà âûòåêàåò îáðàòèìîñòü ìàòðèöû P è òî, ÷òî P −1 åñòü ìàòðèöà ïåðåõîäà îò {fi } ê {gi }). Âïðî÷åì, äåëîíå â íàçâàíèè âàæíî, ÷òîáû P ïðàâèëüíî èñïîëüçîâàëàñü ïðè ïåðåñ÷åòå êîîðäèíàò!798012.2Ëåêöèÿ 12Èçîìîðôèçì ëèíåéíûõ ïðîñòðàíñòâÄâà âåùåñòâåííûõ ëèíåéíûõ ïðîñòðàíñòâà V è W íàçûâàþòñÿ èçîìîðôíûìè, åñëè ñóùåñòâóåò âçàèìíî-îäíîçíà÷íîå îòîáðàæåíèå Φ : V → W , ñîõðàíÿþùåå îïåðàöèè â ñëåäóþùåì ñìûñëå:Φ(a + b) = Φ(a) + Φ(b),Φ(α a) = α Φ(a)∀ a, b ∈ V, ∀ α ∈ R.Ñàìî îòîáðàæåíèå Φ íàçûâàåòñÿ ïðè ýòîì èçîìîðôèçìîì.Çàìåòèì, ÷òî îïåðàöèè ñëîæåíèÿ âåêòîðîâ è óìíîæåíèÿ íà ÷èñëî â ëåâîé è ïðàâîé÷àñòÿõ äàííûõ ðàâåíñòâ, âîîáùå ãîâîðÿ, ðàçíûå! Îïåðàöèè ñëåâà äåéñòâóþò â V , à îïåðàöèè ñïðàâà â W .

Òåì íå ìåíåå, åñëè óñòàíîâëåíî, ÷òî ïðîñòðàíñòâà èçîìîðôíû, òîýòî îçíà÷àåò èõ íåðàçëè÷èìîñòü ñ òî÷êè çðåíèÿ ñâîéñòâ îïåðàöèé.Óòâåðæäåíèå. Φ(0) = 0,Φ(−a) = −Φ(a) ∀ a ∈ V .Äîêàçàòåëüñòâî. Φ(0) = Φ(0 + 0) = Φ(0) + Φ(0). Ïðèáàâèì ê îáåèì ÷àñòÿì âåêòîðb = −Φ(a) (âåêòîð, ïðîòèâîïîëîæíûé ê Φ(a)):0 = b + Φ(0) = (b + Φ(0)) + Φ(0) = 0 + Φ(0) = Φ(0) ⇒ Φ(0) = 0.2Íà ìíîæåñòâå âñåõ âåùåñòâåííûõ ëèíåéíûõ ïðîñòðàíñòâ èçîìîðôèçì ïîðîæäàåò,î÷åâèäíî, îòíîøåíèå ýêâèâàëåíòíîñòè.

Характеристики

Тип файла
PDF-файл
Размер
1,67 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6447
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее