Главная » Просмотр файлов » Е.Е. Тыртышников - Матричный анализ и линейная алгебра

Е.Е. Тыртышников - Матричный анализ и линейная алгебра (1113045), страница 17

Файл №1113045 Е.Е. Тыртышников - Матричный анализ и линейная алгебра (Е.Е. Тыртышников - Матричный анализ и линейная алгебра) 17 страницаЕ.Е. Тыртышников - Матричный анализ и линейная алгебра (1113045) страница 172019-04-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 17)

Ó÷èòûâàÿ ðàâåíñòâî Ax0 + By0 + Cz0 + D = 0,íàõîäèì A(x1 − x0 ) + B(y1 − y0 ) + C(z1 − z0 ) = 0 ⇔ Av1 + Bv2 + Cv3 = 0.Òî æå ñàìîå ìîæíî ïîëó÷èòü ïóòåì ïåðåõîäà îò çàäàííîé àôôèííîé ê êàêîé-íèáóäü äåêàðòîâîéñèñòåìå. Ìû çíàåì, ÷òî â ëþáîé äåêàðòîâîé ñèñòåìå êîîðäèíàò ñ òåì æå íà÷àëîì ïëîñêîñòüπèìååòóðàâíåíèå 0AB0 0xC 0 y 0  = −D,z0 0AB0 C0 = ABC P,P ìàòðèöà ïåðåõîäà îò çàäàííîé àôôèííîé ñèñòåìû ê äåêàðòîâîé (ñì. ðàçäåë 9.11).

Êîîðäèíàòû(v10 , v20 , v30 ) âåêòîðà ~v â äåêàðòîâîé ñèñòåìå è åãî êîîðäèíàòû (v1 , v2 , v3 ) â èñõîäíîé àôôèííîé ñèñòåìåãäåñâÿçàíû ðàâåíñòâîì v1v2  = Pv3 0v1v20 v30 0 v1v1v20  = P −1 v2  .v30v3⇔Óñëîâèå ïàðàëëåëüíîñòè â äåêàðòîâîé ñèñòåìå, êàê ìû óæå âûÿñíèëè, èìååò âèäA0 v10 + B 0 v20 + C30 v30 = 0⇔AB v1C P P −1 v2 v3⇔Av1 + Bv2 + Cv3 = 0.Ëåêöèÿ 1111.1Ëèíåéíûå ïðîñòðàíñòâàÏðè èçó÷åíèè ëèíåéíîé çàâèñèìîñòè âåêòîðîâ, ëèíåéíûõ îáîëî÷åê, áàçèñîâ, ðàçìåðíîñòåé â ïðåäûäóùèõ ëåêöèÿõ ìû ïîëàãàëè, ÷òî âåêòîðû ýòî ìàòðèöû-ñòîëáöû ñ âåùåñòâåííûìè ýëåìåíòàìè. Âïðî÷åì, ïðè èçó÷åíèè ðàíãà ìàòðèöû ðå÷ü óæå çàõîäèëà òàêæåî ëèíåéíîé çàâèñèìîñòè è íåçàâèñèìîñòè ñòðîê ìàòðèöû.

Êîíå÷íî, ñ ôîðìàëüíîé òî÷êè çðåíèÿ ñòðîêè ìîæíî òðàíñïîíèðîâàòü è ñíîâà èìåòü äåëî ñ ìàòðèöàìè-ñòîëáöàìè.Îäíàêî, âñå ïåðå÷èñëåííûå âûøå ïîíÿòèÿ è ìíîãèå ïîëó÷åííûå ôàêòû áåç âñÿêèõ èçìåíåíèé ìîæíî ïðèìåíÿòü è â ñëó÷àå, êîãäà ïîä âåêòîðàìè ïîíèìàþòñÿ ìàòðèöû êàêèõëèáî ôèêñèðîâàííûõ ðàçìåðîâ. Óæå îäíî ýòî çàñòàâëÿåò ïîäóìàòü î ââåäåíèè áîëååîáùåãî (è áîëåå àáñòðàêòíîãî) ïîíÿòèÿ âåêòîðà.Êðîìå òîãî, èçó÷àÿ áàçèñû è ðàçìåðíîñòè, ìû èìåëè äåëî èñêëþ÷èòåëüíî ñ ëèíåéíûìè îáîëî÷êàìè âåêòîðîâ, à ýòî íå âñåãäà óäîáíî: íàïðèìåð, ìíîæåñòâî âñåõ ðåøåíèéîäíîðîäíîé ñèñòåìû ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé Ax = 0 ÿâëÿåòñÿ, êîíå÷íî,ëèíåéíîé îáîëî÷êîé âåêòîðîâ ôóíäàìåíòàëüíîé ñèñòåìû ðåøåíèé, íî áûëî áû ïîëåçíîèìåòü ïðàâî îáñóæäàòü ñâîéñòâà ýòîãî ìíîæåñòâà áåç óïîìèíàíèÿ îá îáðàçóþùåé åãîñèñòåìå âåêòîðîâ.Äàâàéòå ñêàæåì, ÷òî âåêòîðû ýòî ýëåìåíòû íåêîòîðîãî íåïóñòîãî ìíîæåñòâà V ,íà êîòîðîì îïðåäåëåíû äâå îïåðàöèè: ñëîæåíèå âåêòîðîâ (åñëè a, b ∈ V , òî a + b ∈ V )è óìíîæåíèå âåêòîðîâ íà âåùåñòâåííûå ÷èñëà (åñëè a ∈ V è α ∈ R, òî αa ∈ V ) .Ïîòðåáóåì, ÷òîáû äàííûå îïåðàöèè îáëàäàëè ñëåäóþùèìè ñâîéñòâàìè:• (a + b) + c = a + (b + c) ∀ a, b ∈ V( àññîöèàòèâíîñòü ñëîæåíèÿ âåêòîðîâ);• ñóùåñòâóåò îñîáûé âåêòîð 0, íàçûâàåìûé íóëåâûì âåêòîðîì, òàêîé ÷òîa + 0 = 0 + a = a ∀a ∈ V ;• äëÿ ëþáîãî âåêòîðà a ∈ V ñóùåñòâóåò âåêòîð b ∈ V òàêîé, ÷òîa + b = b + a = 0;• a + b = b + a ∀ a, b ∈ V(êîììóòàòèâíîñòü ñëîæåíèÿ âåêòîðîâ);• α(β a) = (αβ) a ∀ α, β ∈ R, ∀ a ∈ V ;• (α + β) a = (αa) + (βa) ∀ α, β ∈ R, ∀a ∈ V(äèñòðèáóòèâíîñòü);• α(a + b) = (αa) + (αb) ∀ α ∈ R, ∀ a, b ∈ V(äèñòðèáóòèâíîñòü);7374Ëåêöèÿ 11• 1·a=a ∀ a∈V.1 òàêèõ ñëó÷àÿõ ìíîæåñòâî V íàçûâàåòñÿ âåùåñòâåííûì ëèíåéíûì ïðîñòðàíñòâîì.×àñòî âñòðå÷àþùèéñÿ òåðìèí-ñèíîíèì âåêòîðíîå ïðîñòðàíñòâî.Çàìåòèì, ÷òî ìíîæåñòâî V îòíîñèòåëüíî îïåðàöèè ñëîæåíèÿ âåêòîðîâ ÿâëÿåòñÿ àáåëåâîé ãðóïïîé.

Ðîëü åäèíè÷íîãî ýëåìåíòà èãðàåò íóëåâîé âåêòîð. Âåêòîð b òàêîé, ÷òîa + b = b + a = 0, íàçûâàåòñÿ ïðîòèâîïîëîæíûì ê âåêòîðó a è îáîçíà÷àåòñÿ b ≡ −a.Íåêîòîðûå ïðèâû÷íûå ñâîéñòâà äàííûõ îïåðàöèé, ðàíåå ñâîáîäíî ïðèìåíÿâøèõñÿê ìàòðèöàì-ñòîëáöàì, â ðàññìîòðåííîì áîëåå àáñòðàêòíîì ñëó÷àå íóæäàþòñÿ â äîêàçàòåëüñòâàõ.Óòâåðæäåíèå 1. 0 · a = 0 ∀ a ∈ V .Äîêàçàòåëüñòâî.  ñèëó äèñòðèáóòèâíîñòè, 0 · a = (0 + 0) · a = (0 · a) + (0 · a). Äàëåå,ïóñòü b = −(0 · a) (ïðîòèâîïîëîæíûé âåêòîð ê âåêòîðó 0 · a).

Òîãäà 0 = b + (0 · a) =(b + (0 · a)) + (0 · a) ⇒ 0 = 0 · a. 2Óòâåðæäåíèå 2.Äîêàçàòåëüñòâî.Óòâåðæäåíèå 3.Äîêàçàòåëüñòâî.α · 0 = 0 ∀ α ∈ R.α · 0 = α(0 + 0) = α · 0 + α · 0 ⇒ α · 0 = 0.2(−1) · a = −a ∀ a ∈ V . ñèëó óòâåðæäåíèÿ 1 è äèñòðèáóòèâíîñòè, 0 = 0·a = (1+(−1))·a =(1 · a) + ((−1) · a) = a + ((−1) · a). 2Óòâåðæäåíèå 4. Åñëè α · a = 0, òî ëèáî α = 0, ëèáî a = 0.Äîêàçàòåëüñòâî. Ïóñòü α 6= 0.

Òîãäà2 111α ·a=(α · a) =· 0 = 0.a=1·a=ααα2Êàê è ðàíüøå, äëÿ ëþáûõ ÷èñåë α1 , . . . , αn âåêòîð w âèäàw = α1 a1 + . . . + αn aníàçûâàåòñÿ ëèíåéíîé êîìáèíàöèåé âåêòîðîâ a1 , . . . an , à ìíîæåñòâî âñåõ ëèíåéíûõ êîìáèíàöèé ñî âñåìè âîçìîæíûìè çíà÷åíèÿìè êîýôôèöèåíòîâ α1 , .

. . , αn íàçûâàåòñÿ ëèíåéíîé îáîëî÷êîé âåêòîðîâ a1 , . . . , an è îáîçíà÷àåòñÿ L(a1 , . . . , an ). äàëüíåéøåì ÷èñëî 0 è íóëåâîé âåêòîð 0 áóäóò îáîçíà÷àòüñÿ îäíèì è òåì æåñèìâîëîì 0.11.2Ïðèìåðû áåñêîíå÷íîìåðíûõ ëèíåéíûõ ïðîñòðàíñòâ(1) Ìíîæåñòâî ôóíêöèé ñ âåùåñòâåííûìè çíà÷åíèÿìè íà îòðåçêå [0, 1].Ñóììà f + g ôóíêöèé f è g îïðåäåëÿåòñÿ êàê ôóíêöèÿ ñî çíà÷åíèÿìè (f + g)(x) =f (x) + g(x).

Ïðè óìíîæåíèè ôóíêöèè íà ÷èñëî ïîëó÷àåòñÿ ôóíêèöÿ αf , îïðåäåëÿåìàÿ ïðàâèëîì (αf )(x) = αf (x). Ðîëü íóëåâîãî âåêòîðà âûïîëíÿåò ôóíêöèÿ,òîæäåñòâåííî ðàâíàÿ íóëþ.1 Äàííîå ñâîéñòâî ðàâíîñèëüíî òîìó, ÷òî êàæäûé âåêòîðíåêîòîðîãî âåêòîðàa ìîæíî ïðåäñòàâèòü â âèäå a = αb äëÿb è íåêîòîðîãî ÷èñëà α.  ñàìîì äåëå, åñëè ýòî ñâîéñòâî âûïîëíåíî, òî ìîæíî âçÿòüb = a è α = 1. Ñ äðóãîé ñòîðîíû, ïóñòü âûïîëíåíèå ýòîãî ñâîéñòâà íå ïðåäïîëàãàåòñÿ, íî èçâåñòíî, ÷òîa = αb. Òîãäà, èñïîëüçóÿ àêñèîìó α(β a) = (αβ) a, ïîëó÷àåì 1 · (αb) = (1 · α) · b = αb ⇒ 1 · a = a.2 Óòâåðæäåíèå íåëüçÿ ïîëó÷èòü áåç àêñèîìû 1 · a = a.  ñàìîì äåëå, âîçüìåì ëþáóþ àáåëåâó ãðóïïóV ñ íóëåâûì ýëåìåíòîì 0 è îïðåäåëèì óìíîæåíèå íà ÷èñëî ïðàâèëîì αa = 0 äëÿ âñåõ ÷èñåë α èâåêòîðîâ a ∈ V .

Ïðè ýòîì áóäóò âûïîëíåíû âñå àêñèîìû ëèíåéíîãî ïðîñòðàíñòâà, êðîìå äàííîé.Å. Å. Òûðòûøíèêîâ75(2) Ìíîæåñòâî áåñêîíå÷íûõ ïîñëåäîâàòåëüíîñòåé {xk }∞k=1 .Ñóììà ïîñëåäîâàòåëüíîñòåé {xk } è {yk } îïðåäåëÿåòñÿ êàê ïîñëåäîâàòåëüíîñòü{zk } ñ ÷ëåíàìè zk = xk + yk . Ïðîèçâåäåíèå ïîñëåäîâàòåëüíîñòè {xk } íà ÷èñëîα îïðåäåëÿåòñÿ êàê ïîñëåäîâàòåëüíîñòü {zk } ñ ÷ëåíàìè zk = αxk . Ðîëü íóëåâîãîâåêòîðà âûïîëíÿåò ïîñëåäîâàòåëüíîñòü, â êîòîðîé âñå ýëåìåíòû ðàâíû íóëþ.(3) Ìíîæåñòâî ñõîäÿùèõñÿ ïîñëåäîâàòåëüíîñòåé {xk }∞k=1 .Îïåðàöèè îïðåäåëÿþòñÿ òàê æå, êàê è â ñëó÷àå ïðîèçâîëüíûõ áåñêîíå÷íûõ ïîñëåäîâàòåëüíîñòåé. Íåîáõîäèìî ëèøü çàìåòèòü, ÷òî ñóììà ñõîäÿùèõñÿ ïîñëåäîâàòåëüíîñòåé îñòàíåòñÿ ñõîäÿùåéñÿ ïîñëåäîâàòåëüíîñòüþ, à óìíîæåíèå ñõîäÿùåéñÿïîñëåäîâàòåëüíîñòè íà ÷èñëî òàêæå äàåò ñõîäÿùóþñÿ ïîñëåäîâàòåëüíîñòü.Ïðèìåðû (1)-(3) çàìå÷àòåëüíû òåì, ÷òî ñîîòâåòñòâóþùèå ëèíåéíûå ïðîñòðàíñòâà íå ÿâëÿþòñÿ ëèíåéíîé îáîëî÷êîé êàêîãî-òî êîíå÷íîãî ÷èñëà ñâîèõ âåêòîðîâ.

Òàêèåëèíåéíûå ïðîñòðàíñòâà íàçûâàþòñÿ áåñêîíå÷íîìåðíûìè.Äîêàæåì, íàïðèìåð, áåñêîíå÷íîìåðíîñòü ïðîñòðàíñòâà ôóíêöèé. Ïðåäïîëîæèì îòïðîòèâíîãî, ÷òî îíî ñîâïàäàåò ñ ëèíåéíîé îáîëî÷êîé êàêèõ-òî ôóíêöèé f1 , . . . , fn . Òîãäàëþáàÿ ôóíêöèÿ f èìååò âèäf (x) = α1 f1 (x) + . . .

+ αn fn (x).(∗)Âûáåðåì n ïîïàðíî ðàçëè÷íûõ òî÷åê x1 , . . . , xn ∈ [0, 1] è äëÿ ïðîèçâîëüíî âûáðàííîéôóíêöèè f ðàññìîòðèì ñèñòåìó óðàâíåíèéα1 (f ) f1 (x1 ) + . . . + αn (f ) fn (x1 ) = f (x1 ),............α1 (f ) f1 (xn ) + .

. . + αn (f ) fn (xn ) = f (xn ).Ýòî åñòü ñèñòåìà ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé îòíîñèòåëüíî α1 (f ), . . . , αn (f ).Åñëè ìàòðèöà êîýôôèöèåíòîâ äàííîé ñèñòåìû íåîáðàòèìà, òî çàâåäîìî ðåøåíèå ñóùåñòâóåò íå äëÿ ëþáîé ïðàâîé ÷àñòè. Òîãäà ðàâåíñòâî (∗) íå âûïîëíÿåòñÿ õîòÿ áû äëÿîäíîé ôóíêöèè f . Ñëåäîâàòåëüíî, ìàòðèöà êîýôôèöèåíòîâ äîëæíà áûòü îáðàòèìîé.Ïîýòîìó äëÿ çàäàííîé ôóíêöèè f êîýôôèöèåíòû α1 (f ), . . . , αn (f ) îïðåäåëåíû îäíîçíà÷íî.Ïóñòü òåïåðü òî÷êà x∗ ∈ [0, 1] íå ñîâïàäàåò íè ñ îäíîé èç òî÷åê x1 , . . . , xn .

Çàâåäîìîñóùåñòâóåò ôóíêöèÿ g òàêàÿ, ÷òî g(xi ) = f (xi ) ïðè i = 1, . . . , n, íî g(x∗ ) 6= f (x∗ ).ßñíî, ÷òî αi (f ) = αi (g) ïðè i = 1, . . . , n, îòêóäà f = g , ÷åãî áûòü íå ìîæåò, ïîñêîëüêóf (x∗ ) 6= g(x∗ ). 2Çàäà÷à.ñòàòî÷íî, ÷òîáû äëÿ íåêîòîðûõ ÷èñåë11.3f1 (x), . . .

, fn (x) íåîáõîäèìî è äînxn ìàòðèöà [fi (xj )]ij=1 áûëà îáðàòèìîé.Äîêàçàòü, ÷òî äëÿ ëèíåéíîé íåçàâèñèìîñòè ôóíêöèéx1 , . . . ,Ïðèìåðû êîíå÷íîìåðíûõ ëèíåéíûõ ïðîñòðàíñòâËèíåéíûå ïðîñòðàíñòâà, ïðåäñòàâëÿþùèå ñîáîé ëèíåéíóþ îáîëî÷êó íåêîòîðîãî êîíå÷íîãî ÷èñëà ñâîèõ âåêòîðîâ, íàçûâàþòñÿ êîíå÷íîìåðíûìè.(1) Ìíîæåñòâî ìíîãî÷ëåíîâ ïîðÿäêà n.76Ëåêöèÿ 11Ìíîãî÷ëåíîì (ïîëèíîìîì) îò x ïîðÿäêà n íàçûâàåòñÿ âûðàæåíèå âèäàf (x) = an−1 xn−1 + an−2 xn−2 + . . . + a1 x + a0 .Åñëè ak 6= 0 è ak+1 = . .

. = an−1 = 0, òî k íàçûâàåòñÿ ñòåïåíüþ ìíîãî÷ëåíà f (x).Âûðàæåíèÿ âèäà axi íàçûâàþòñÿ îäíî÷ëåíàìè, èëè ìîíîìàìè.Áóäåì ðàññìàòðèâàòü f (x) êàê ôóíêöèþ îò x. Òîãäà ñóììà ìíîãî÷ëåíîâ è óìíîæåíèå ìíîãî÷ëåíà íà ÷èñëî îïðåäåëÿþòñÿ òàê æå, êàê â ñëó÷àå ôóíêöèé îáùåãî âèäà.Ïðè ýòîì ÿñíî, ÷òî ðåçóëüòàòû ýòèõ îïåðàöèé îñòàþòñÿ ìíîãî÷ëåíàìè. Î÷åâèäíî,ëèíåéíîå ïðîñòðàíñòâî âñåõ ìíîãî÷ëåíîâ ïîðÿäêà n ÿâëÿåòñÿ ëèíåéíîé îáîëî÷êîéîäíî÷ëåíîâ âèäàxn−1 , xn−2 , . .

Характеристики

Тип файла
PDF-файл
Размер
1,67 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6455
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее