Главная » Просмотр файлов » Е.Е. Тыртышников - Матричный анализ и линейная алгебра

Е.Е. Тыртышников - Матричный анализ и линейная алгебра (1113045), страница 21

Файл №1113045 Е.Е. Тыртышников - Матричный анализ и линейная алгебра (Е.Е. Тыртышников - Матричный анализ и линейная алгебра) 21 страницаЕ.Е. Тыртышников - Матричный анализ и линейная алгебра (1113045) страница 212019-04-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 21)

Ïóñòü äëÿ îïðåäåëåííîñòè x ∈ π− è y ∈ π+ . Òîãäà óðàâíåíèåc> (x + t(y − x)) = bèìååò ðåøåíèåt=b − c> xb − c> x=,c> (y − x)(b − c> x) − (b − c> y)ïðè÷åì ñ î÷åâèäíîñòüþ 0 < t < 1. Åñëè æå x, y ∈ π− (π+ ), òî ïðè ëþáîì 0 ≤ t ≤ 1íàõîäèì x + t(y − c) ∈ π− (π+ ). 213.5Âûïóêëûå ìíîæåñòâàÏóñòü V ëèíåéíîå ïðîñòðàíñòâî è x, y ∈ V . Ìíîæåñòâî òî÷åê âèäà x + t(y − x) =(1 − t)x + ty , 0 ≤ t ≤ 1, íàçûâàåòñÿ îòðåçêîì, ñîåäèíÿþùèì x è y . Ìíîæåñòâî M ⊂ Víàçûâàåòñÿ âûïóêëûì, åñëè âìåñòå ñ ëþáûìè äâóìÿ òî÷êàìè îíî ñîäåðæèò âñå òî÷êèñîåäèíÿþùåãî èõ îòðåçêà.

Òî÷êè, ïîëó÷àåìûå ïðè 0 < t < 1, íàçûâàþòñÿ âíóòðåííèìèòî÷êàìè îòðåçêà.Ëþáûå ïîëóïðîñòðàíñòâà â Rn âûïóêëûå ìíîæåñòâà. Òî æå âåðíî è äëÿ ïåðåñå÷åíèÿ ëþáîãî ÷èñëà ïîëóïðîñòðàíñòâ. Ýòî ñëåäñòâèå áîëåå îáùåãî è î÷åâèäíîãî ôàêòà:ïåðåñå÷åíèå ëþáîãî ÷èñëà âûïóêëûõ ìíîæåñòâ ÿâëÿåòñÿ âûïóêëûì ìíîæåñòâîì. îïðåäåëåííîì ñìûñëå äâîéñòâåííûé ïîäõîä ê ïîñòðîåíèþ âûïóêëûõ ìíîæåñòâòàêîé. Ïóñòü v1 , . .

. , vk ∈ V . Òîãäà âåêòîðti ≥ 0, t1 + . . . + tk = 1,v = t1 v1 + . . . + tk vk ,íàçûâàåòñÿ âûïóêëîé êîìáèíàöèåé âåêòîðîâ v1 , . . . , vk . Ìíîæåñòâî âñåõ âîçìîæíûõ âûïóêëûõ êîìáèíàöèé çàäàííûõ âåêòîðîâ íàçûâàåòñÿ èõ âûïóêëîé îáîëî÷êîé.Óòâåðæäåíèå 1. Âûïóêëàÿ îáîëî÷êà âåêòîðîâ ÿâëÿåòñÿ âûïóêëûì ìíîæåñòâîì.Äîêàçàòåëüñòâî. Ïóñòü x = α1 v1 + . . . + αk vk è y = β1 v1 + . . . βk vk . Òîãäà ïðè 0 ≤ t ≤ 1ïîëó÷àåì(1 − t)x + ty =kX((1 − t)αi + tβi )vi .i=1ÅñëèPαi =Pβi = 1 è αi , βi ≥ 0, òî, î÷åâèäíî,kX((1 − t)αi + tβi ) = 1,(1 − t)αi + tβi ≥ 02i=1Íàïðèìåð, â òðåõìåðíîì ïðîñòðàíñòâå âûïóêëàÿ îáîëî÷êà òðåõ òî÷åê, íå ëåæàùèõÅ. Å.

Òûðòûøíèêîâ91íà îäíîé ïðÿìîé, ïðåäñòàâëÿåò ñîáîé òðåóãîëüíèê ñ âåðøèíàìè â ýòèõ òî÷êàõ. Âûïóêëàÿ îáîëî÷êà ÷åòûðåõ òî÷åê, íå ëåæàùèõ â îäíîé ïëîñêîñòè, åñòü òåòðàýäð.Óòâåðæäåíèå 2. Ïóñòü M âûïóêëîå ìíîæåñòâî. Òîãäà âìåñòå ñ ëþáîé ñèñòåìîéòî÷åê M ñîäåðæèò öåëèêîì è èõ âûïóêëóþ îáîëî÷êó.Äîêàçàòåëüñòâî. Åñëè t1 > 0, òîkXkXti vi = t1 v1 + (1 − t1 )i=1i=2!kXtitivi ,= 1.1 − t11 − t1i=2Äàëåå ïðîâîäèì èíäóêöèþ ïî ÷èñëó òî÷åê k . 2Ëþáîå (â òîì ÷èñëå è áåñêîíå÷íîå) ìíîæåñòâî òî÷åê S ñîäåðæèòñÿ â íåêîòîðîìâûïóêëîì ìíîæåñòâå (äîñòàòî÷íî ó÷åñòü, ÷òî ëþáîå àôôèííîå ìíîæåñòâî ÿâëÿåòñÿâûïóêëûì).

Ïåðåñå÷åíèå âñåõ òàêèõ ìíîæåñòâ áóäåò íàèìåíüøèì âûïóêëûì ìíîæåñòâîì, ñîäåðæàùèì S . Îíî íàçûâàåòñÿ âûïóêëîé îáîëî÷êîé ìíîæåñòâà S . Ëåãêî âèäåòü,÷òî åñëè S êîíå÷íàÿ ñèñòåìà òî÷åê, òî åå âûïóêëàÿ îáîëî÷êà ñîâïàäàåò ñ âûïóêëîéîáîëî÷êîé ìíîæåñòâà S .Çàäà÷à.ÌàòðèöàA ∈ Rn×níàçûâàåòñÿäâîÿêîñòîõàñòè÷åñêîé,åñëè âñå åå ýëåìåíòû íåîòðè-öàòåëüíû, à ñóììà ýëåìåíòîâ â êàæäîé ñòðîêå è êàæäîì ñòîëáöå ðàâíà 1. Äîêàçàòü, ÷òî ìíîæåñòâîâñåõ äâîÿêîñòîõàñòè÷åñêèõ ìàòðèö ïîðÿäêànÿâëÿåòñÿ âûïóêëûì è íàéòè âñå åãîóãëîâûåòî÷êè (òàêíàçûâàþòñÿ òî÷êè ìíîæåñòâà, íå ÿâëÿþùèåñÿ âíóòðåííèìè íè äëÿ îäíîãî îòðåçêà, ïðèíàäëåæàùåãîäàííîìó ìíîæåñòâó).92Ëåêöèÿ 13Ëåêöèÿ 1414.1Êîìïëåêñíûå ÷èñëàÊàê èçâåñòíî, êâàäðàòíîå óðàâíåíèå ñ âåùåñòâåííûìè êîýôôèöèåíòàìè ìîæåò íå èìåòüâåùåñòâåííûõ ðåøåíèé.

Ôîðìàëüíî ïîëîæåíèå ëåãêî ïîïðàâèòü, ââåäÿ äëÿ îáîçíà÷åíèÿíåñóùåñòâóþùèõ ðåøåíèé íåêèå àáñòðàêòíûå ÷èñëà. Íî îäíèõ îáîçíà÷åíèé, êîíå÷íî,ìàëî. Âàæíî îïðåäåëèòü îïåðàöèè ñëîæåíèÿ è óìíîæåíèÿ äëÿ íîâûõ ÷èñåë òàêèì îáðàçîì, ÷òîáû îñòàëèñü â ñèëå ïðèâû÷íûå ñâîéñòâà ýòèõ îïåðàöèé íàä âåùåñòâåííûìè÷èñëàìè. êà÷åñòâå àáñòðàêòíûõ ÷èñåë ðàññìîòðèì 2 × 2-ìàòðèöû ñïåöèàëüíîãî âèäàa −bz = z(a, b) =,a, b ∈ R.(∗)b aÎáîçíà÷èì ÷åðåç C ìíîæåñòâî âñåõ òàêèõ ìàòðèö.

Îïåðàöèè ñëîæåíèÿ è óìíîæåíèÿàáñòðàêòíûõ ÷èñåë îïðåäåëèì êàê ñîîòâåòñòâóþùèå îïåðàöèè íàä ìàòðèöàìè. Ýëåìåíòàðíî ïðîâåðÿþòñÿ, ÷òî îíè îáëàäàþò ñëåäóþùèìè ñâîéñòâàìè.(1) Åñëè u, v ∈ C, òî u + v ∈ C è uv ∈ C.(2) Ëþáàÿ íåíóëåâàÿ ìàòðèöà z = z(a, b) ∈ C îáðàòèìà, à ñîîòâåòñòâóþùàÿîáðàòíàÿ ìàòðèöà èìååò âèä−bac −d−1, d= 2.z =,c= 22d ca +ba + b2(3) Ìíîæåñòâî C îòíîñèòåëüíî îïåðàöèè ñëîæåíèÿ ìàòðèö ÿâëÿåòñÿ àáåëåâîéãðóïïîé.(4) Ìíîæåñòâî C\{0} îòíîñèòåëüíî îïåðàöèè óìíîæåíèÿ ìàòðèö ÿâëÿåòñÿ àáåëåâîé ãðóïïîé.(5) Èìååò ìåñòî äèñòðèáóòèâíîñòü: z(u + v) = zu + zv ∀ u, v, z ∈ C.Åñëè â óòâåðæäåíèÿõ (3)-(5) çàìåíèòü C íà R, òî ïîëó÷àòñÿ îñíîâíûå ñâîéñòâà îïåðàöèé íàä âåùåñòâåííûìè ÷èñëàìè.

Ïîýòîìó ýëåìåíòû ìíîæåñòâà C ëîãè÷íî ðàññìàòðèâàòü êàê ÷èñëà. Ýòî è áóäóò òàê íàçûâàåìûå êîìïëåêñíûå ÷èñëà.Âåùåñòâåííûå ÷èñëà a è b íàçûâàþòñÿ ñîîòâåòñòâåííî âåùåñòâåííîé è ìíèìîé÷àñòüþ êîìïëåêñíîãî ÷èñëà z = z(a, b) Îáîçíà÷åíèå: Re(z) = a, Im(z) = b. Ðàññìîòðèì äâå ñïåöèàëüíûå ìàòðèöû âèäà (∗):1 00 −1e=,i=.0 11 0Ëåãêî âèäåòü, ÷òîz = z(a, b) = ae + bi,93a, b ∈ R.(∗∗)94Ëåêöèÿ 14Ìàòðèöà e âûïîëíÿåò ðîëü åäèíè÷íîãî ýëåìåíòà îòíîñèòåëüíî îïåðàöèè óìíîæåíèÿ.Ìàòðèöó âèäà ae åñòåñòâåííî îòîæäåñòâèòü ñ âåùåñòâåííûì ÷èñëîì a.

Òîãäà e = 1 · eîòîæäåñòâèòñÿ ñ ÷èñëîì 1, à ñîîòíîøåíèå (∗∗) ïðèìåò âèäz = a + bi,è ïðè ýòîì, êàê ëåãêî ïðîâåðèòü,i2 = −1(−1 îòîæäåñòâëÿåòñÿ ñ ìàòðèöåé −e).Íåñëîæíî ïðîâåðèòü, ÷òî óðàâíåíèå z 2 = −1 èìååò íà ìíîæåñòâå C â òî÷íîñòè äâàðåøåíèÿ z = ±i. Îòñþäà ìîæíî âûâåñòè, ÷òî ëþáîå êâàäðàòíîå óðàâíåíèå ñ âåùåñòâåííûìè êîýôôèöèåíòàìè èìååò äâà (èíîãäà ñîâïàäàþùèõ) ðåøåíèÿ èç C. Ìû ñêîðîóâèäèì, ÷òî òî æå âåðíî è äëÿ êâàäðàòíûõ óðàâíåíèé ñ êîìïëåêñíûìè êîýôôèöèåíòàìè.Êîíå÷íî, êîìïëåêñíûå ÷èñëà ìîæíî áûëî áû ââåñòè áåç èñïîëüçîâàíèÿ ìàòðèö ñêàçàâ, ÷òî ýòî ïàðû (a, b) âåùåñòâåííûõ ÷èñåë, äëÿ êîòîðûõ îïåðàöèè îïðåäåëÿþòñÿïðàâèëàìè(a, b) + (c, d) = (a + c, b + d),(a, b)(c, d) = (ac − db, ad + bc).Ïðèäåòñÿ èçìåíèòü ëèøü íåêîòîðûå äåòàëè äîêàçàòåëüñòâà ñâîéñòâ (3)-(5).Íàø èíòåðåñ ê èñïîëüçîâàíèþ ìàòðèö âèäà (∗) îáúÿñíÿåòñÿ òåì, ÷òî îíè ïîçâîëèëè íàì ïîëó÷èòü èñêîìûå àáñòðàêòíûå ÷èñëà êàê óæå çíàêîìûå îáúåêòû ñ õîðîøîèçó÷åííûìè ñâîéñòâàìè.14.2Êîìïëåêñíàÿ ïëîñêîñòüÐàññìîòðèì ïëîñêîñòü ñ äåêàðòîâîé ñèñòåìîé êîîðäèíàò.

Ïóñòü (a, b) òî÷êà (ðàäèóñâåêòîð) ñ êîîðäèíàòàìè a, b. Î÷åâèäíî, (a, b) ↔ z = a + bi åñòü âçàèìíî-îäíîçíà÷íîåñîîòâåòñòâèå ìåæäó òî÷êàìè (ðàäèóñ-âåêòîðàìè) ïëîñêîñòè è êîìïëåêñíûìè ÷èñëàìè.Ïëîñêîñòü, òî÷êè (ðàäèóñ-âåêòîðû) êîòîðîé èñïîëüçóþòñÿ äëÿ èçîáðàæåíèÿ êîìïëåêñíûõ ÷èñåë, íàçûâàåòñÿ êîìïëåêñíîé ïëîñêîñòüþ.Ðàññìîòðèìêîìïëåêñíîå ÷èñëî z = a + bi. Äëèíà îòâå÷àþùåãî åìó ðàäèóñ-âåêòîðà,√22ðàâíàÿ a + b , íàçûâàåòñÿ ìîäóëåì êîìïëåêñíîãî ÷èñëà z è îáîçíà÷àåòñÿ |z|. Óãîë φìåæäó ðàäèóñ-âåêòîðîì äëÿ z 6= 0 è ïîëîæèòåëüíûì íàïðàâëåíèåì ïåðâîé îñè (îñè àáñöèññ), íàçûâàåòñÿ àðãóìåíòîì êîìïëåêñíîãî ÷èñëà z . Îáîçíà÷åíèå: φ = arg z .

Êîíå÷íî,àðãóìåíò îïðåäåëåí ñ òî÷íîñòüþ äî ñëàãàåìîãî, êðàòíîãî 2π .×èñëó z = 0 ìîæíî ïðèïèñàòü ëþáîå çíà÷åíèå àðãóìåíòà.Î÷åâèäíî,z = |z| (cos φ + i sin φ),φ = arg z.Òàêàÿ ôîðìà ïðåäñòàâëåíèÿ êîìïëåêñíîãî ÷èñëà íàçûâàåòñÿ åãî òðèãîíîìåòðè÷åñêîéôîðìîé.Çàìåòèì, ÷òî ñóììå êîìïëåêñíûõ ÷èñåë ñîîòâåòñòâóåò ñóììà ñîîòâåòñòâóþùèõðàäèóñ-âåêòîðîâ. Îòñþäà ïîëó÷àåì î÷åíü ïîëåçíîå íåðàâåíñòâî (íåðàâåíñòâî òðåóãîëüíèêà)|u + v| ≤ |u| + |v|∀ u, v ∈ C,Å. Å. Òûðòûøíèêîâ95è åãî íå ìåíåå ïîëåçíîå ñëåäñòâèå| |u| − |v| | ≤ |u − v|∀ u, v ∈ C.Ïðè óìíîæåíèè z íà êîìïëåêñíîå ÷èñëîw = |w| (cos ψ + i sin ψ),ψ = arg w,ïîëó÷àåòñÿzw = |z| |w| (cos φ + i sin φ) (cos ψ + i sin ψ)= |z| |w| ((cos φ cos ψ − sin φ sin ψ) + i (cos φ sin ψ + sin φ cos ψ))= |z| |w| (cos(φ + ψ) + i sin(φ + ψ)).Òàêèì îáðàçîì, ïðè óìíîæåíèè êîìïëåêñíûõ ÷èñåë ìîäóëè ïåðåìíîæàþòñÿ, à àðãóìåíòû ñêëàäûâàþòñÿ.Îòìåòèì óäîáíîå îáîçíà÷åíèå: eiφ = cos φ + i sin φ.

1 Òîãäà eiφ eiψ = ei(φ+ψ) (â ïîëíîìñîãëàñèè ñ ôîðìàëüíûì ïðèìåíåíèåì èçâåñòíûõ ñâîéñòâ ýêñïîíåíöèàëüíîé ôóíêöèè).Êîìïëåêñíîå ÷èñëî a − bi íàçûâàåòñÿ ñîïðÿæåííûì ê z = a + bi. Îáîçíà÷åíèå: z̄ =a−bi. Íà êîìïëåêñíîé ïëîñêîñòè ðàäèóñ-âåêòîð äëÿ z̄ ïîëó÷àåòñÿ èç ðàäèóñ-âåêòîðà äëÿz ñèììåòðè÷íûì îòðàæåíèåì îòíîñèòåëüíî ïåðâîé îñè. Çàìåòèì òàêæå, ÷òî z̄ z = |z|2 .Îòìå÷åííûå ñâîéñòâà êîìïëåêñíûõ ÷èñåë óïðîùàþò ïîëó÷åíèå íåêîòîðûõ èíòåðåñíûõ ôîðìóë.

Íàïðèìåð, ÷òîáû âû÷èñëèòü ñóììóSn =nPcos kφ,çàìåòèì, ÷òîk=1Sn = RenPzkk=1Òàêèì îáðàçîì, çàäà÷à ñâîäèòñÿ ñ ñóììèðîâàíèþ ãåîìåòðè÷åñêîé ïðîãðåññèè:14.3z = cos φ + i sin φ. n+1 Sn = Re z z−1−z ., ãäåÏðåîáðàçîâàíèÿ ïëîñêîñòèÑ ïîìîùüþ êîìïëåêíûõ ÷èñåë ìîæíî çàäàâàòü âçèìíî-îäíîçíà÷íûå îòîáðàæåíèÿ ïëîñêîñòè íà ñåáÿ.

Íàïðèìåð, ôèêñèðóåì w ∈ C è ðàññìîòðèì îòîáðàæåíèå z → z + w.Ýòî ïàðàëëåëüíûé ïåðåíîñ (ñäâèã) òî÷åê íà âåêòîð, çàäàííûé êîìïëåêñíûì ÷èñëîì w.Äàëåå, ðàññìîòðèì îòîáðàæåíèå z → wz â ïðåäïîëîæåíèè, ÷òî |w| = 1.  ñèëó òîãî,÷òî |w| = 1, íàõîäèì |wz| = |z|. Ïðè ýòîì ðàäèóñ-âåêòîð äëÿ wz ïîëó÷àåòñÿ ïîâîðîòîìðàäèóñ-âåêòîðà äëÿ z íà óãîë φ = arg w. Òàêèì îáðàçîì, óìíîæåíèå êîìïëåêñíûõ ÷èñåëíà ôèêñèðîâàííîå êîìïëåêñíîå ÷èñëî w ñ ìîäóëåì 1 çàäàåò ïîâîðîò íà óãîë, ðàâíûéàðãóìåíòó ÷èñëà w.Óìíîæåíèå íà âåùåñòâåííîå ÷èñëî ρ > 0 çàäàåò ãîìîòåòèþ êàæäûé ðàäèóñâåêòîð óìíîæàåòñÿ íà ρ (ðàñòÿãèâàåòñÿ â ρ ðàç).Ïîñêîëüêó â ñëó÷àå w 6= 0 ìîæíî çàïèñàòü w = |w| we, ãäå we = w/|w| è, ñëåäîâàòåëüíî, |w|e = 1, óìíîæåíèå íà ïðîèçâîëüíîå êîìïëåêñíîå ÷èñëî w 6= 0 ñâîäèòñÿ êêîìïîçèöèè (ïîñëåäîâàòåëüíîìó âûïîëíåíèþ) äâóõ îòîáðàæåíèé: ïîâîðîòà è ãîìîòåòèè.Ïðåîáðàçîâàíèå âèäà z → z̄ òàêæå ÿâëÿåòñÿ âçàèìíî-îäíîçíà÷íûì. Ýòî ñèììåòðè÷íîå îòðàæåíèå îòíîñèòåëüíî ïåðâîé îñè.

Íî îíî óæå íå ïðåäñòàâèìî â âèäå êîìïîçèöèèïîâîðîòîâ, ãîìîòåòèé è ïàðàëëåëüíûõ ïåðåíîñîâ. Ñêàçàííîå îçíà÷àåò, ÷òî íè äëÿ êàêèõ1  òåîðèè ôóíêöèé êîìïëåêñíûõ ïåðåìåííûõ äàåòñÿ ñïåöèàëüíîå îïðåäåëåíèå ôóíêöèè â ëåâîé÷àñòè, à äàííîå ðàâåíñòâî íàçûâàåòñÿäåëåíèÿ.ôîðìóëîé Ýéëåðàè äîêàçûâàåòñÿ ñ èñïîëüçîâàíèåì ýòîãî îïðå-96Ëåêöèÿ 14êîìïëåêñíûõ ÷èñåë a, b íåëüçÿ ïîëó÷èòü ðàâåíñòâî z̄ = a + bz , âåðíîå äëÿ âñåõ z ∈ C.Äîêàæèòå!Óòâåðæäåíèå.

Характеристики

Тип файла
PDF-файл
Размер
1,67 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6455
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее