Главная » Просмотр файлов » Е.Е. Тыртышников - Матричный анализ и линейная алгебра

Е.Е. Тыртышников - Матричный анализ и линейная алгебра (1112313), страница 57

Файл №1112313 Е.Е. Тыртышников - Матричный анализ и линейная алгебра (Е.Е. Тыртышников - Матричный анализ и линейная алгебра) 57 страницаЕ.Е. Тыртышников - Матричный анализ и линейная алгебра (1112313) страница 572019-04-25СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 57)

, bam }òàêæå ñîäåðæèò m ðàçëè÷íûõ ýëåìåíòîâ è ïðè ýòîìH ∩ aH = ∅,H ∩ bH = ∅,aH ∩ bH = ∅.Åñëè H ∪aH ∪bH = G, òî âñå äîêàçàíî. Åñëè íåò, äåéñòâóåì êàê è ðàíüøå. Ïîñêîëüêó÷èñëî ýëåìåíòîâ â G êîíå÷íî, íà êàêîì-òî øàãå ìû ïîëó÷èì ðàçëîæåíèåH ∪ aH ∪ bH ∪ . . . ∪ cH = Gñ êîíå÷íûì ÷èñëîì ïîïàðíî íåïåðåñåêàþùèõñÿ ìíîæåñòâ H, aH, bH, .

. . , cH .Çàäà÷à.Çàäà÷à.Äîêàæèòå, ÷òî â ëþáîé áåñêîíå÷íîé ãðóïïå ÷èñëî ðàçëè÷íûõ ïîäãðóïï áåñêîíå÷íî.42.2ãäådH1 è H2 ïîðÿäêà n1 è n2 , ñîîòâåòñòâåííî.â ìíîæåñòâå H1 H2 = {g ∈ G : g = h1 h2 , h1 ∈ H1 , h2 ∈ H2 } ðàâíîâ ïåðåñå÷åíèè H1 ∩ H2 . êîíå÷íîé ãðóïïåÄîêàæèòå, ÷òî ÷èñëî ýëåìåíòîân1 n2 /d,2 ÷èñëî ýëåìåíòîâGâûáðàíû ïîäãðóïïûÑìåæíûå êëàññû, íîðìàëüíûå äåëèòåëè, ôàêòîð-ãðóïïûÏóñòü H ïîäãðóïïà ãðóïïû G è a ∈ G. ÌíîæåñòâàaH = {x : x = ah, h ∈ H}èHa = {y : y = ha, h ∈ H}íàçûâàþòñÿ ëåâûì ñìåæíûì êëàññîì è ïðàâûì ñìåæíûì êëàññîì ãðóïïû G ïî ïîäãðóïïå H .273274Ëåêöèÿ 42Åñëè b ∈ aH , òî bH = aH (äîêàæèòå!) îòñþäà âûòåêàåò, ÷òî ëåâûå (ïðàâûå)ñìåæíûå êëàññû ëèáî ñîâïàäàþò, ëèáî íå ïåðåñåêàþòñÿ (íà ýòîì ôàêòå è áûëî îñíîâàíîäîêàçàòåëüñòâî òåîðåìû Ëàãðàíæà).Ïîäãðóïïà H íàçûâàåòñÿ íîðìàëüíîé ïîäãðóïïîé èëè íîðìàëüíûì äåëèòåëåìãðóïïû G, åñëèaH = Ha ∀ a ∈ G.⇔aha−1 ∈ H∀ a ∈ G ∀ h ∈ H.Ýëåìåíò eh íàçûâàåòñÿ ñîïðÿæåííûì ê h, åñëè eh = aha−1 äëÿ íåêîòîðîãî a ∈ G.

Òàêèìîáðàçîì, ïîäãðóïïà H ⊂ G ÿâëÿåòñÿ íîðìàëüíîé òîãäà è òîëüêî òîãäà, êîãäà H âìåñòåñ ëþáûì ýëåìåíòîì ñîäåðæèò âñå ñîïðÿæåííûå ê íåìó ýëåìåíòû.Ïóñòü K ìíîæåñòâî ðàçëè÷íûõ ñìåæíûõ êëàññîâ äëÿ íîðìàëüíîãî äåëèòåëÿ H ⊂G. Îïðåäåëèì ïðîèçâåäåíèå ñìåæíûõ êëàññîâ ñëåäóþùèì îáðàçîì:(aH)(bH) ≡ (ab)H.Ïðåæäå âñåãî, íóæíî óáåäèòüñÿ â òîì, ÷òî åñëè a1 ∈ aH, b1 ∈ bH , òî (a1 b1 )H = (ab)H(òî åñòü, îïðåäåëåíèå êîððåêòíî). Ïóñòü a1 = ah1 , b1 = bh2 , h1 , h2 ∈ H .

Çíà÷èò, åñëèh ∈ H , òî(a1 b1 )h = ah1 bh2 h = (ab)(b−1 h1 b)(h2 h) ∈ (ab)H. 2Íåòðóäíî ïðîâåðèòü, ÷òî îïåðàöèÿ óìíîæåíèÿ ñìåæíûõ êëàññîâ ïðåâðàùàåò ìíîæåñòâî K â ãðóïïó. Ýòà ãðóïïà íàçûâàåòñÿ ôàêòîð-ãðóïïîé ãðóïïû G ïî íîðìàëüíîìóäåëèòåëþ H . Îáîçíà÷åíèå: K = G/H .Çàäà÷à.Êàêèå ñìåæíûå êëàññû ÿâëÿþòñÿ ïîäãðóïïàìè?Çàäà÷à.Äîêàæèòå, ÷òî ëþáàÿ àáåëåâà ãðóïïà ïîðÿäêàpq ,ãäåpèq ðàçëè÷íûå ïðîñòûå ÷èñëà,ÿâëÿåòñÿ öèêëè÷åñêîé.42.3Èçîìîðôèçìû ãðóïïÐàññìîòðèì ãðóïïó H ñ îïåðàöèåé ∗ è ãðóïïó G ñ îïåðàöèåé ◦.

Îáðàòèìîå îòîáðàæåíèåf : H → G íàçûâàåòñÿ èçîìîðôèçìîì, åñëèf (a ∗ b) = f (a) ◦ f (b) ∀ a, b ∈ H.(#)Ñâîéñòâî (#) íàçûâàåòñÿ ñâîéñòâîì ñîõðàíåíèÿ îïåðàöèé. Ëåãêî âèäåòü, ÷òî îáðàòíîåîòîáðàæåíèå f −1 : G → H òàêæå ÿâëÿåòñÿ èçîìîðôèçìîì. Ãðóïïû H è G íàçûâàþòñÿèçîìîðôíûìè. Îáîçíà÷åíèå: H ' G. Íåñìîòðÿ íà ôîðìàëüíûå ðàçëè÷èÿ â îïðåäåëåíèèýëåìåíòîâ è îïåðàöèé, èçîìîðôíûå ãðóïïû ìîæíî ñ÷èòàòü îäèíàêîâûìè ñ òî÷êè çðåíèÿñâîéñòâ èõ îïåðàöèé.Íàïðèìåð, ëþáûå äâå êîíå÷íûå öèêëè÷åñêèå ãðóïïû îäíîãî ïîðÿäêà n áóäóò èçîìîðôíûìè. Åñëè a0 , a1 , .

. . , an−1 âñå ðàçëè÷íûå ýëåìåíòû ãðóïïû H , òî an = a0 (äîêàæèòå!). Ïóñòü b0 , b1 , . . . , bn−1 âñå ðàçëè÷íûå ýëåìåíòû ãðóïïû G. Òîãäà îïðåäåëèìîòîáðàæåíèå f ïðàâèëîì f (ak ) = bk . Îíî ÿâëÿåòñÿ èçîìîðôèçìîì, ïîñêîëüêóf (ak+m ) = bk+m = bk bm = f (ak ) f (am ).Çàäà÷à.Äîêàæèòå, ÷òî ãðóïïà ïîëîæèòåëüíûõ ðàöèîíàëüíûõ ÷èñåë îòíîñèòåëüíî óìíîæåíèÿ íåèçîìîðôíà ãðóïïå âñåõ ðàöèîíàëüíûõ ÷èñåë ñ îïåðàöèåé ñëîæåíèÿ.Çàäà÷à.Íàéäèòå âñå ãðóïïû, èçîìîðôíûå ëþáîé ñâîåé íååäèíè÷íîé ïîäãðóïïå.Å. Å.

Òûðòûøíèêîâ42.4275Ãîìîìîðôèçìû ãðóïïÎòîáðàæåíèå f : H → G íàçûâàåòñÿ ãîìîìîðôèçìîì, åñëè âûïîëíÿåòñÿ ñâîéñòâîñîõðàíåíèÿ îïåðàöèé (#) (ïðè ýòîì îáðàòèìîñòü îòîáðàæåíèÿ íå òðåáóåòñÿ).Îáîçíà÷èì ÷åðåç eG åäèíè÷íûé ýëåìåíò ãðóïïû G. Åãî ïîëíûé ïðîîáðàç K =−1f (eG ) íàçûâàåòñÿ ÿäðîì ãîìîìîðôèçìà f . Ìíîæåñòâî f (H) íàçûâàåòñÿ îáðàçîì ãîìîìîðôèçìà f .Óòâåðæäåíèå. ßäðî ãîìîìîðôèçìà f : H → G ÿâëÿåòñÿ íîðìàëüíîé ïîäãðóïïîéãðóïïû H . Îáðàç ãîìîìîðôèçìà f ÿâëÿåòñÿ ïîäãðóïïîé ãðóïïû G.Äîêàçàòåëüñòâî.

Ïóñòü e åäèíèöà ãðóïïû H è K ÿäðî ãîìîìîðôèçìà f . Äëÿëþáîãî a ∈ H íàõîäèì f (ae) = f (a)f (e) = f (a) ⇒ f (e) = eG . Èòàê, e ∈ K .Äàëåå, åñëè a ∈ H , òî f (e) = f (aa−1 ) = f (a)f (a−1 ) = eG ⇒ f (a−1 ) = (f (a))−1 .−1Ïðåäïîëîæèì, ÷òî a ∈ K . Òîãäà f (a−1 ) = e−1∈ K.G = eG ⇒ aÅñëè f (a) = f (b) = eG , òî f (ab) = eG eG = eG ⇒ ab ∈ K .Íàêîíåö, ïðîâåðèì íîðìàëüíîñòü ïîäãðóïïû K .

Ïóñòü a ∈ H , b ∈ K . Òîãäàf (aba−1 ) = f (b) = eG ⇒ aba−1 ∈ K . 2Òåîðåìà î ãîìîìîðôèçìå. Ïóñòü f : H → G ãîìîìîðôèçì ãðóïïû H â ãðóïïó Gè ïóñòü K åãî ÿäðî. Òîãäà f (H) ' H/K .Äîêàçàòåëüñòâî. Îòîáðàæåíèå Φ : H/K → f (H) îïðåäåëèì ñëåäóþùèì îáðàçîì:Φ(aK) = f (a),a ∈ H.Ïóñòü a1 = ab1 , b1 ∈ K . Òîãäà f (a1 ) = f (a).Îáðàòíî, åñëè f (a1 ) = f (a), òî f (a1 a−1 ) = eG ⇒ a1 a−1 ∈ K . Òàêèì îáðàçîì,îòîáðàæåíèå îïðåäåëåíî êîððåêòíî (òî åñòü, íå çàâèñèò îò âûáîðà ïðåäñòàâèòåëÿ a âñìåæíîì êëàññå aK ) è ÿâëÿåòñÿ âçàèìíî-îäíîçíà÷íûì. Ëåãêî âèäåòü, ÷òî îíî ñîõðàíÿåòîïåðàöèè:Φ((aK)(bK)) = Φ((ab)K) = f (ab) = f (a)f (b) = Φ(aK)Φ(bK).2Òåîðåìà ïîêàçûâàåò, ÷òî èçó÷àòü îáðàçû ãðóïïû ïðè âñåâîçìîæíûõ ãîìîìîðôèçìàõ ìîæíî èçíóòðè: äëÿ ïîëíîãî îïèñàíèÿ ñîîòâåòñòâóþùèõ ïîäãðóïï ãðóïïû G, âêîòîðîé ðàçìåùàþòñÿ îáðàçû ýëåìåíòîâ, íå òðåáóåòñÿ çíàíèå ñàìîé ãðóïïû G âîïðîññâîäèòñÿ ê èçó÷åíèþ ôàêòîð-ãðóïï ïî íîðìàëüíûì äåëèòåëÿì çàäàííîé ãðóïïû.42.5Èçáûòî÷íîñòü â îïðåäåëåíèè ãðóïïûÏóñòü G íåïóñòîå ìíîæåñòâî ñ àññîöèàòèâíîé àëãåáðàè÷åñêîé îïåðàöèåé.

Ýëåìåíò e ∈ G íàçûâàåòñÿïðàâîé åäèíèöåé, åñëè ae = a äëÿ âñåõ a ∈ G. Ýëåìåíò b ∈ G íàçûâåòñÿ ïðàâûì îáðàòíûì äëÿ a ∈ Gîòíîñèòåëüíî ïðàâîé åäèíèöû e, åñëè ab = e.Òåîðåìà. Ïóñòü G èìååò ïðàâóþ åäèíèöó e, îòíîñèòåëüíî êîòîðîé äëÿ êàæäîãî ýëåìåíòà a ∈ Gñóùåñòâóåò ïðàâûé îáðàòíûé ýëåìåíò. Òîãäà G ÿâëÿåòñÿ ãðóïïîé.Äîêàçàòåëüñòâî.e ÿâëÿåòñÿ åäèíè÷íûì ýëåìåíòîì. Âîçüìåì ïðîèçc = ea. Ñîãëàñíî óñëîâèþ òåîðåìû, ñóùåñòâóþò b, d ∈ G òàêèå, ÷òîab = e è bd = e. Îòñþäà a = ed. Äàëåå, cb = e(ab) = e, îòêóäà c = ed = a.Äîêàæåì òåïåðü, ÷òî b ÿâëÿåòñÿ îáðàòíûì ýëåìåíòîì äëÿ a.

Ïóñòü c = ba. Òîãäà cb = b(ab) = b, èçíà÷èò, c = bd = e. 2âîëüíûé ýëåìåíòaÄîêàæåì, ÷òî ïðàâàÿ åäèíèöàè ïîëîæèì276Ëåêöèÿ 42Äîïîëíåíèå ê ëåêöèè 443.1Çíàêîïåðåìåííàÿ ãðóïïàÍàçâàíèå çíàêîïåðåìåííîé ãðóïïû An (ãðóïïû âñåõ ÷åòíûõ ïîäñòàíîâîê ñòåïåíè n)íàâåÿíî ñëåäóþùèì ïîñòðîåíèåì. Ðàññìîòðèì îòîáðàæåíèå1,σ ÷åòíàÿ ïîäñòàíîâêà,sgn : Sn → K = {1, −1},sgn(σ) =−1,σ íå÷åòíàÿ ïîäñòàíîâêà.Íà ìíîæåñòâå çíàêîâ K ââåäåì îïåðàöèþ óìíîæåíèÿ òàê æå, êàê äëÿ öåëûõ ÷èñåë.Òîãäà K ïðåâðàùàåòñÿ â àáåëåâó ãðóïïó, à îòîáðàæåíèå sgn ñîõðàíÿåò îïåðàöèè:sgn(σ1 σ2 ) = sgn(σ1 )sgn(σ2 )∀ σ1 , σ2 ∈ Sn .Ïîýòîìó sgn ÿâëÿåòñÿ ãîìîìîðôèçìîì ãðóïïû Sn íà ãðóïïó K .Íàïîìíèì, ÷òî ÿäðîì ãîìîìîðôèçìà íàçûâàåòñÿ ìíîæåñòâî âñåõ ýëåìåíòîâ ãðóïïû,êîòîðûå ïåðåâîäÿòñÿ äàííûì ãîìîìîðôèçìîì â åäèíè÷íûé ýëåìåíò (âîîáùå ãîâîðÿ,äðóãîé ãðóïïû ñîäåðæàùåé îáðàçû ýëåìåíòîâ ïðè äàííîì îòîáðàæåíèè).

Òàêèì îáðàçîì, ÿäðîì ãîìîìîðôèçìà sgn ÿâëÿåòñÿ â òî÷íîñòè çíàêîïåðåìåííàÿ ãðóïïà An .Ïîãðóïïà An ÿâëÿåòñÿ â Sn íîðìàëüíûì äåëèòåëåì, ïîñêîëüêó ÿäðî ëþáîãî ãîìîìîðôèçìà ãðóïïû ÿâëÿåòñÿ åå íîðìàëüíûì äåëèòåëåì. Âîò, âïðî÷åì, ïðÿìàÿ ïðîâåðêàòîãî, ÷òî An åñòü íîðìàëüíûé äåëèòåëü ãðóïïû Sn : åñëè σ ∈ Sn è h ∈ An , òî, î÷åâèäíî,σhσ −1 ∈ An ⇒ σAn = An σ (ëåâûå ñìåæíûå êëàññû ñîâïàäàþò ñ ïðàâûìè). äàííîì ñëó÷àå èìååòñÿ âñåãî äâà ðàçëè÷íûõ ñìåæíûõ êëàññà ãðóïïû Sn ïî íîðìàëüíîé ïîäãðóïïå An : eAn = An è τ An , ãäå e òîæäåñòâåííàÿ ïîäñòàíîâêà, à τ ïðîèçâîëüíàÿ íå÷åòíàÿ ïîäñòàíîâêà (íàïðèìåð, òðàíñïîçèöèÿ).  ñàìîì äåëå, åñëè σ1è σ2 îäíîé ÷åòíîñòè, òî h = σ1−1 σ2 ∈ An ⇒ σ1 An = σ2 An .

Òàêèì îáðàçîì, ôàêòîðãðóïïà Sn /An ñîñòîèò èç äâóõ ñìåæíûõ êëàññîâ. Îíà èçîìîðôíà ãðóïïå çíàêîâ K :èçîìîðôèçì îñóùåñòâëÿåòñÿ îòîáðàæåíèåì σAn → sgn(σ) (çäåñü ìû èìååì ÷àñòíûéñëó÷àé áîëåå îáùåé òåîðåìû î ãîìîìîðôèçìå èç Ëåêöèè 2).43.2Ïîäãðóïïû ñèììåòðè÷åñêîé ãðóïïûÒåîðåìà. Ëþáàÿ êîíå÷íàÿ ãðóïïà ïîðÿäêà n èçîìîðôíà íåêîòîðîé ïîäãðóïïå ñèììåòðè÷åñêîé ãðóïïû Sn .Äîêàçàòåëüñòâî. Ïóñòü ãðóïïà G èìååò ýëåìåíòû g1 , . .

. , gn . Òîãäà äëÿ ëþáîãî iýëåìåíòû gi g1 , . . . , gi gn ïðåäñòàâëÿþò ñîáîé ïåðåñòàíîâêó ýëåìåíòîâ g1 , . . . , gn . Îáîçíà÷èì ñîîòâåòñòâóþùóþ ïîäñòàíîâêó ÷åðåç σi è îïðåäåëèì îòîáðàæåíèå Φ : G → Snïðàâèëîì Φ(gi ) = σi . Î÷åâèäíî, Φ(gi gj ) = σi σj . Ïîýòîìó Φ ÿâëÿåòñÿ ãîìîìîðôèçìîì⇒ åãî îáðàç Φ(G) ÿâëÿåòñÿ ïîäãðóïïîé â Sn .Îñòàåòñÿ çàìåòèòü, ÷òî Φ(gi ) = Φ(gj ) ⇔ gi = gj . 227727843.3Ëåêöèÿ 43×åòíîñòü áåç èíâåðñèéÒî, ÷òî ÷åòíîñòü ÷èñëà òðàíñïîçèöèé â ëþáîì ðàçëîæåíèè ïîäñòàíîâêè îäíà è òà æå, ìîæíî äîêàçàòüè áåç ïîäñ÷åòà ÷èñëà èíâåðñèé.

Ýòî ñðàçó æå âûòåêàåò èç ñëåäóþùåãî íàáëþäåíèÿ.Óòâåðæäåíèå.  ëþáîì ðàçëîæåíèè òîæäåñòâåííîé ïîäñòàíîâêè â ïðîèçâåäåíèå òðàíñïîçèöèé èõ÷èñëî ÷åòíî.Äîêàçàòåëüñòâî. Ïóñòü òîæäåñòâåííàÿ ïîäñòàíîâêà e ∈ Sn ðàçëîæåíà â ïðîèçâåäåíèå òðàíñïîçèöèée = (ij) . . . (kl), â êîòîðîì ñðåäè èíäåêñîâ i, j, . . . , k, l èìååòñÿ ðîâíî s ðàçëè÷íûõ. ßñíî, ÷òî 2 ≤ s ≤ nè â ñëó÷àå s = 2 óòâåðæäåíèå î÷åâèäíî. Ïðîâåäåì èíäóêöèþ ïî s. Ïóñòü s ≥ 3.

Íå îãðàíè÷èâàÿîáùíîñòè, ìîæíî ñ÷èòàòü, ÷òî èíäåêñû ðàâíû 1, . . . , s. Ëåãêî ïðîâåðèòü, ÷òî (1l)(kl) = (1k)(1l) äëÿëþáûõ k, l 6= 1 è (1l)(ij) = (ij)(1l) ïðè {i, j} 6= {1, l}. Ïîýòîìó ìîæíî ïåðåäâèíóòü âñå òðàíñïîçèöèèâèäà (1l) âïðàâî è ïîëó÷èòü äðóãîå ðàçëîæåíèåe = (i1 j1 ) . . . (ik jk ) (1l1 ) . . . (1lm )ñ òåì æå ÷èñëîì òðàíñïîçèöèé. Äàëåå, åñëè l1óáðàòü ïàðó òðàíñïîçèöèé(1l1 ), (1l2 ).ìîæíî ïîëó÷èòü ðàçëîæåíèå ñ òåì æåñîäåðæàùèõ èíäåêñ= l2 , òî (1l1 )(1l2 ) = e è â ïîñëåäíåì ðàçëîæåíèè ìîæíî6= l2 , òî, èñïîëüçóÿ ðàâåíñòâî (1l1 )(1l2 ) = (l1 l2 )(1l1 ),÷èñëîì òðàíñïîçèöèé è ìåíüøèì íà 1 ÷èñëîì òðàíñïîçèöèé,Åñëè æå l11:e = (i1 j1 ) . .

. (ik jk )(l1 l2 ) (1l1 )(1l3 ) . . . (1lm ).Ïðîäîëæàÿ òàêèì æå îáðàçîì, ïðèäåì ê ðàçëîæåíèþ ñ ÷èñëîì òðàíñïîçèöèé, óìåíüøåííûì íà ÷åòíîå÷èñëî, è, âîçìîæíî, âñåãî ëèøü îäíîé òðàíñïîçèöèåé âèäà(1l):e = (i1 j1 ) . . . (ip jp ) (1l).Ïîñêîëüêói1 , j1 , .

Характеристики

Тип файла
PDF-файл
Размер
1,77 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6390
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее