Главная » Просмотр файлов » И.И. Ляшко, А.К. Боярчук, Я.Г. Гай, Г.П. Головач - Математический анализ - Кратные и криволинейные интегралы

И.И. Ляшко, А.К. Боярчук, Я.Г. Гай, Г.П. Головач - Математический анализ - Кратные и криволинейные интегралы (1111813), страница 22

Файл №1111813 И.И. Ляшко, А.К. Боярчук, Я.Г. Гай, Г.П. Головач - Математический анализ - Кратные и криволинейные интегралы (И.И. Ляшко, А.К. Боярчук, Я.Г. Гай, Г.П. Головач - Математический анализ - Кратные и криволинейные интегралы) 22 страницаИ.И. Ляшко, А.К. Боярчук, Я.Г. Гай, Г.П. Головач - Математический анализ - Кратные и криволинейные интегралы (1111813) страница 222019-05-06СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 22)

в некоторой области, содержащей кривую ", = АВ, выполняется равенство Р Ых + Я Ну = Ыи, то интеграл Рдх+ Яду = и(В) — и(А) не зависит от выбора пути интегрирования, соединяющего точку А с точкой В. Если функции Р н Я определены и непрерывны вместе со сзоимн частными производныл|п и — в замкнутой односвязной области В С Р, а которой выполняется равенство зо еР э еэ ез ад дР д, ду (2) то дифференциальная форма с = Р дх+ Яку является полным дифференциалом некоторой функции и и криволинейный интеграл Рдх+ Яду (3) не зависит от выбора пути интегрирования пз точки А в точку В, лежащего в Р. Равенство (2) является необходимым п достаточным условнел~ независимости криволинейного интеграла (3) от пути интегрирования, лежащего в одиосвязной области Ю, Для того чтобы дифференциальная форма ы = Рдх + стоу+ Кдг была полным дифференциалом некоторой функции и в замкнутой односвязиой области К С й, необходимо и достаточно, чтобы в К выполнялись условия з дЯ дР дК дЯ дР дЛ (4) д* ду ' ду д.

' д д, ' В этом случае интеграл лВ не зависит от выбора пути интегрирования, если кривая з = АВ лежит в К. Если в односвязных замкнутых областях В С мэ и К С м~ выполняются условия (2) и (4), то Р(*, у) Ых + ьг(к, у) ду = лн, Р(х, у, з) ах+1>(х, у, л) Ну+ Я(х, у, з) дг = йи, а функции н и м можно найти по формулам Х з и(х, у) = ~ Р(Г, уо) дт+ / Я(х. 1) да + С, 3 4. Интегрирование на многообразиях 157 Криволинейный интеграл второго рода имеет физический смысл работы силового векторного поля Х, а поверхностный интеграл второго рода — потока векторного поля Х через поверхность Я. Заметиьп что криволинейные и поверхностные интегралы второго рода зависят от ориентации кривой э и поверхности Я: при изменении направления обхода кривой 1 и изменении трансверсальной ориентации поверхности 5 скалярные произведения (Р, т),(Г, и) меняют знаки на противополо'кные.

189 2 4. Интегрирование на многообразиях из которых получаем интеграл Х в виде 1( 2+ 2+ 2) 11 3,1 На окружности -, выполнено равенство х + у + 22 = а, в силу которого имеем 1 ы -«а . 2 2 2 2 2 так как 31 = г '1 126. 1 = ) 2Л, где ", — кривая.

полученная в результате пересечения поверхностей. заданных уравнениями хз + у = 22, ут = ах, пробегаемая от точки О = (О. О, 0) до точки А = (а, и. ач'2) . < В качестве параметра выберем перел1енную х. Тогда пара«1етрические уравнения кривой; примут вид х= х, ужч«ах, гик ~/22+ах (О (х (а). Поскольку — 12х, ЫУ = „-1( — Их. 2х+и 1 /а 2~/х~ + их 2 х то. применив формулу (6).

п,4.3, получим а — 2 2 1 ю — 8хз -«Оих + 2из 32 =— 2 / 2 / Зх = о а 1 (1' 9а 2 1' 2 9а — гу22+ — 822 + 9ах+ 2а — — а 1п гъ«22+ — + 8хз + 9ах+ 2ат 4Я ~,(, 4ь12) 32 ( 4ъ«2 ю — ~100 Ч 38 — 72 — 17 1п а2 Г „25+ 4ч'38 2 238Л ), 1 Найти длины пространственнык кривык (параыетры считать положительными), заданных уравнениями: 127. (х — у) = а(х+ у), х — у = -2 от точки О = (О, О, О) до точки А = (ха, уо. о), 2 2 2 9 8 м Параметрнзуем кривую, полагая х+у = 2(х — у). Тогда из уравнений кривой получаем х — у = ай х + у кк ах~, -22 ю а 1 (1 ) О), откуда х = -(Ф +2).

у = -(С вЂ” С), )2! = — а12, а 2 а 2 2Л 2 2 ' 3 2 2 При этом точке О соответствует значение 1 = О, точке .А — значение 1« = - (-12 2«2, Обо- 1 121 2 а значая через Х искомую длину кривой, получим 1« у= / 1 «11 + ««11 н«.«11'- ч ) (+ 1) г о о (1« ( Г 2 а 2 3 э 32« 2 ахе = — (1 +1)~ = — у2 — +га†128. х + у = сх. — = 18 — от точки О = (О, О. 0) до точки А = (2:«. уо. 2«). 2 2 У Х 2.

С 180 Гл. 2. Кратные н криволинейные интегралы ч Параметризуеь1 кривую взяв в качестве параметра полярный угол р. Полагал х ж рсоа р. у = рмв 1о, получаем р = сх. 18р = 18 -, откуда х = ср, р = с р. Параметрические з уравнения кривой принилгают вид хо 1 х ж с /д соз р, у = с „/уз)п р, х = с р (О ( Ье ( — ) . с,) Нычпсллл диффеРенциал кРивой 4! = с (чгР+ — ) ЫГс и интегРиРУЯ полУченное выРажение 1 2;/т в пределах от 0 до =з,находим с =,/Б;( — '+1), и 129. Найти массу гп дуги параболы ", = ((х, у) Е Н: у = 2рх, 0 ч х ( - г, если ее з з Р~ линейная плотность р(х, у) в текущей точке (х, у) равна )у(.

° в * ... фе .п.а ф р, е- '7зооггьх~птхь. и». мая во внилгание равенство р(х, у) = (у( = ~/2рх хи симметрию точек параболы относительно оси Ох, находим Р 2 з Р з(з т+Х, у)41 ж г~у~2рХ, 1+ — 4Х = 2 ° /грт+рт ЗХ = — (2РХ+Р )У~ = -Р (2ЬГ2 — 1). М гх зр ~,-3 о о а$ аг 130. Найти массу т кривой ~ С Я~. заданной уравнениями х ж ад у = —, х = — (О < /2у Г ( 1) линейная плотность которой меняется по формуле р(х, у, х) = (/ — .

(у а < Согласно формуле (13), п.4.3, имеелг 1 тп = / р(х, у, х) Й = / р(х(г). у(г), г(г)) (х (г)р+ (у(г))2+ (г(г))зад ъ о и- - е' згя), нл=,е-. тхтсгга. г 1 тма ~Г 1+ГЗ-~.1441= — ~гт+-) -1- — 4(Г~+ -) ж 2 / 1 2) 4 (~ 2) а о ='-((""г) ' """ '-"(" -'""""'"))(= а/ з з+гчгз1 = — ~~(3Л вЂ” 1) + — 1л — ( . и 8 ( 2 3 131. Найти координаты центра тяжести однородной кривой 3 С Н~, заданной уравнением у = асЪ вЂ”, от точки А = (О, а) до точки В = (Ь, Ь) (а > О, Ь > О, Ь > 0). М Воспользуелщл формуламн (15), п.4.3. Поскольку кривая 1 однородна, то в формулах (15), н.4.3, следует взять р(х, у) = 1. Имеем ,'=.ь-*,е-атее'уь-, 1~а'*-ь= г-'ь.

а У о а ь, Г х Ь Ьз г — —— Ь вЂ” 4 = .Ь вЂ” =,1 — — 1=,Г~к- а а Вяз о Ь 4. Интегрирование на многообразиях 101 ь хо = — ! х 4! = — / х с)т - 4х ж — (ах зй — — а с!т -)! ~ та — (Ь э)т — — а с)т — + а) = тл/ тл / а тл а а ~о тл а а о — Ь с)тз — — 1 — Л+ а = — ! — г(йз — ат — Л+ от = Ь вЂ” а )/ Ь+.' ь — — (1+с!т — ) т!х = 2тл / а) о а тт Ьчтйз — аз'Э Ь 2тл [ а / 2 уо = — уй= аЬ + гчйз-аэ' 'ттл ( 2 132. Найпт координаты центра тяжести контура однородного сферического треугольника Я = Ь(х, у, з) Е !л ".

х + у + з = а . х )~ О. у В 01 з В 0). 4 Сферический треугольник однороден, в силу чего имеем 1 У хс = — / х й!. ус = — / у 41, зс = — / гй1, з где; — контур треугольника, тл = -та — его длина. В плоскости уОт выполняется тоткдество х = О. поэтому где;1 — часть кривой э . леясащая в плоскости хОу, Зэ — та ее часть, которая леконт в плоскости хОг. Еривые П н;з можно задать соответственно параметрическими уравнениями х = асозго, у та аз!вот х асозтЬ, у оо азтв то причем а! = а4от на;1 и а! = арф на тз.

Поэтоьгу т о з з бз .тп созэо1Ьтт+ созй4тЬ 111 о о 2а 4а пэ Зтт Аналогично, ус = зс = — ° ьа Эт' 133. Найти статические моменты дуги; однородной астронды, заданной уравнением 2 з з хо + уз = аз, х )~ О, у ) О, относительно осей координат. ч Воспользуемся формулами 114), п.4.3, полагая в ннк ргх, у) = 1.

Записав параметрические уравнения астроиды в виде х ж а созз з, у = аз!и" ! (О ( ! ( -) и принимая во внимание зг решение примера 123, имеем з Лтт —— За соз тз!л гт!! = -а, ° з ь . 3 $ о !ЬГ = За з!л зсозгт!г= -а з о 3 о т" х а з х — у(х) с!т — Ых = — ~ сй — 4х тл а пт/ а о о .Ь вЂ” )/ — (Ь+ .Ь- Ь-) (О < Р < — ") 1 (о<В < — "), 1бг Гл. 2, Кратные и криволинейные интегралы л34. Найти момент инерции однородной окружности ! = Цх, у) б Ж~: х + уз = аз) относительно ее диаметра.

и Момент инерции однородной окружности ", соопадает с ! нли 1т (свь. формулы (14), пА.З), если систельа координат хОу выбрана так, ьто диаметр окружности; является отрезком оси Ох, а начало координат совпадает с централь окружности. Принимая во внимание однородность окру'кности т, имеем 2» 1=1,= ~уьНыа ( а!и рь!от=та о (прн вычьклении интеграла вощюльзовались параметрическими уравиениялпь окружности х = а соя ьь», у = о ми уь 0 ~< р < -'. и равенством ь!! = и ь!р). > 'ль35.

Найти полярный момент инерции 1о ье (з + у ) ьт! относительно точки О = (О, 0) однородного контура квадрата ", = ((х, у) б Р: щах()х!, /у/) = а). м Контур квадрата; образован отрезкальи прямых, заданных уравненивми у = на, х = жа. Если х = каь то х + у~ = а + у~, -а < у < аь ь!! = ь!у. Если же у = жа, то х +у =х +а,— а<х(~а,ь!1=ь!х. Заменив криволинейный интеграл 1о соответствующим интегралом Рььмана. получим ь.=г )ь.*»тьь„ь /ь.*».'ьь.) = — ".'.

Характеристики

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
304
Средний доход
с одного платного файла
Обучение Подробнее