Главная » Просмотр файлов » А.К. Боярчук, Г.П. Головач - Дифференциальные уравнения в примерах и задачах

А.К. Боярчук, Г.П. Головач - Дифференциальные уравнения в примерах и задачах (1109000), страница 67

Файл №1109000 А.К. Боярчук, Г.П. Головач - Дифференциальные уравнения в примерах и задачах (А.К. Боярчук, Г.П. Головач - Дифференциальные уравнения в примерах и задачах) 67 страницаА.К. Боярчук, Г.П. Головач - Дифференциальные уравнения в примерах и задачах (1109000) страница 672019-04-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 67)

Поскольку у' < 0 при у > х, то ордината кривой будет возрастать (рис. 52). Однако, в силу того, по парабола у = Тх является решением данного дифференциальною урав- 3 г пения, наблюдаемая нами интегральная кривая не может ее пересечь, а значит, и уйти из области у > эх . 3 Х Следовательно, пространство межау параболами — г у=.2 и у=- 2 у будет заполнено гиперболообразными кривыми, одна из ко( торых рассмотрена выше. Парабола же у = ч х служит раз- 3 г делителем указанных кривых. Далее, поскольку при фиксированном у < хг будет ху !пп =О, г ! Х то все интегральные кривые в области у < х приближаются к оси Ох и ее не пересекают (в силу того, гго у = 0 есть решение и при у = * выполншотся условия теоремы о един- г ! ственности интегральной кривой).

При у < -чг2х' все ин! тегральные кривые выпуклы вниз, поэтому попасть в точку (О, 0) не могут. Таким образом, в начало координат заходит только две интегральные кривые: Рсс. 53 у=О и у= хг. 7 Итак, принимая во внимание проведенное исследование, строим окончательную картину интегральных кривых (рис. 53), м 651. Доказать, что если !) уравнение 305 Положим (гаа — а)3)х+ (иа — ЬВ)у = Л(ах+ )уу), где Л вЂ” некоторая постоянная.

Тогда из последнего тождества найдем: (ги — Л)а — ар = 0 иа -(Ь4Л)13 = О. 1 (3) Поскольку а ф 0 л Д Ф О, то в силу однородности системы (3) приходим к условию: пь — Л -а ! / = 0 ~ Л, з = — ~т — Ь х (га — Ь) — 4(аи — Ьги)) . и — Ь вЂ” Л 2 ~, Далее, так как особая точка (О, 0) — седла, то корни Ли Лз действительные. Следовательно, числа а, 1) также действительны, н мы имеем, вообще говоря, два интегрирующих множителя, получающихся путем интегрирования уравнения (2): ь- р~ = С,)в,! ц, рз — — Сз!ыз! "2, (4) где ы, = а,я+ фу, и, = азх+ 1)зу, С„Сз — постоянные интегрирования.

Заметим, что так как Ь Ф ги (это следует из условия 1) теоремы), то множители (4) отличны от постоянных. Поскольку Л,Лз < О, то независимо от знака Ь вЂ” ги один из показателей в (4) является положительным. Последнее означает, что один из множителей непрерывен. м $ 3. Фазовая плоскость 3.1. Основные понятия. Система дифференциальных уравнений йхг йг — = уг(х„хн ..., х„), ь = 1, и, в которую переменная Г (время) явно не входит, а функции у, непрерывно дифференцируемы в некоторой области, называется авгвааамиай.

Каждому решению хг — — р,(1), г = 1, и системы (1) поставим в соответствие движение точки в и-мерном пространстве (х„х„..., х„). Кривая, описываемая точкой в процессе движения, называется юравхюаривй. Таким образом, х; = р;(1), 1 = 1, и суть параметрические уравнения этой траектории. Пространство размерности и, в котором решения системы (1) изображаются в виде траекторий, называется фазовых прастраастваи. В частности, если и = 2, то фазовое пространство называется фазавай плоскостью.

Вектор у = (~и Уп..., у„) называется фазавай скарасюью. Положения равновесия автономной системы находятся из условия У = О, т.е. как решения системы конечных уравнений: Д(хи хз, ...,х„) = О, 1 = 1, и. 3.2. Построение фазового портрета. Для того, чтобы начертить на фазовой плоскости картину траекторий автономной системы х= У(х, у), у=д(х, у), (2) нужно, во-первых, исследовать особые точки этой системы, а во-вторых, с помощью производных ую у~~г изучить поведение интегральных кривых уравнения йу д(х, у) йх у(х, у) (заметим, что иногда решения этого уравнения находятся в замкнутом вице). В том случае, когда требуется построить траектории уравнения У = д(х, х), нужно ввести переменную у = х и от этого уравнения перейти к системе х= у, у=д(х, у), которая юишется частным слу шем системы (2).

306 Гл. 6. Уетойчивоегь и фвэовме траектории 3.4. Признаки отсутствия предельиык циклов. Признак бендиксана. Если правые части уравнений(2) имеют непрерывные частные првизводныв первою порядка в односвнзнай области Р и выражение д/ дд — +— (3) дх дд нигде нг меняет знак и нв равно тозкдгстввиному пума„тв в области Р нет предельных циклов. Признак Пуанкаре. Пусть о(х, 9) = С вЂ” семейства гладких замкнутых кривых, покрывающих плоскость Охд. Тогда всви выражение дв до 1+ 9 дх дд в некоторой области Р сохраняет постоянный знак, то в нгй нгт предельных циклов. Односвязная область Р на плоскости Оху не содержит предельных циклов„если в этой области нет особых точек системы (2). (4) 3.5.

Призяаки наличия пределъвык циклов. Теорема Левинсона — Смажи. Пусть в дифференциальном уравнении х+ ху(х) + 9(х) = О, (5) функции Г' и д непрерывны при есвх х и обеспечивают единственное решение задачи Коши, непрерывно зависящее от начальных условий. Пусть, кроме того, выполняются следующие условия: 1) хд(х)>0 дчн хФО; 2) Т, д — дифференцируемые функции; 3) Г (х) < 0 на ( — х„хг), где хг, хг полахситвльны, Г (х) > 0 двя всех остальных значений х, причем Р(ос) = со, гдв Р(х) = ~Г (в) двг в 4) О(~со) = оо; 5) 6( хг) = 6(хг), где О(х) = /9(в) йв.

о Тогда уравнение (5) имеет едшгственный устойчивый предельный цикл на фзювой плоскости (х, х). Теорема Рейссига. Рассмотрии уравнение х+ ((х) + д(х) = О, (6) где у, д — непрерывные функции, у(0) = О, хд(х) > 0 при х ф О. Пусть функции У, д дгя всех их аргументов непрерывны и обеспечивают существование единственного решения уравнения (6), удовлетворяющего заданным пачавъным усвовиям и непрерывно зависящею от этих условий. Пусть, кроме 3.3. Предельиые циклы, Предельным циклом системы (1) называется ззмкггутая изолированная траектория этой системы, у которой существует окрестность, целиком заполненная траекториями, по которым фазовая точка неограниченно приближается к этой замкнутой кривой при ( -+ +ос или при à — -оо. Если траектории системы (1) приближаются к предельному циклу только при б — +ос, то последний называется устойчивым.

Если же траектории системы (!) приближаются к предельному циклу только при ( — оо, то он называется неустойчивым. В случае и = 2 (фазанья плоскость) рассматривают так называемые полуустойчивые предельные циклы. Именно, предельный цикл на фаэовой плоскости называется погуустойчивым, если траектории системы (2) с одной стороны приближаются к нему при ( - +со, а с другой — при 1 — -со. Следовательно, возможны полуустойчивые циклы двух типов. Теорема.

Пусть К вЂ” предельный цикл система (2), правая часть которой непрерывна вместе со своими частными производнььяи по х и по у. Тогда всв внутренние травюнарии, начинающиеся вблизи К, наматываются на него, как спиравц либо при Г +со, либо при à — ос. Высказанное утагрждение справедливо и сля внешних относительно предельного цикла траекторий. 302 в 3. Фазоаая нлвскветь 1) УЗ(У) < 0 пРи (У( < Ог, гй > 0; 2) 1(у)ндпу > в > 0 пуи (У( > Ог > г),; 3) гпах Т'(у) = М > 0; ь!ят 4) у(х) звп х > М -1- е при (х( > д > О.

Тогда на фазовой плоскости система *=У У= У(х) Т(У) сущесгпвует по меньшей мере один устойчивый предельный ишт. В задачах 652 — ббб для данных уравнений начертить траектории на фазовой плоскости. 652. х — х+ х' = о. м Полагая х = у, переходим к системе у =х — х, х=у, из которой почленным делением ее уравнений получаем ду х — х з дх (ч) нли (при у ~ 0) уду = (х — х ) дх. Обцгий иггтеграл уравнения (*) имеет вид: 3(у хз)+2х С Поскольку при замене у на -у интегральные кривые вида своих уравнений не меняют, то все они симметричны относительно оси Ох.

Давая параметру С конкретные значения и используя обычные средсгна математического анализа, строим картину траекторий на фазовой плоскости (рис. 54). Заметим, что кривым, охватывающим точку (1, О), соответствугот значения С, уловлетворяющие неравенству — 1 < С < О. Далее, уравнение (*) имеет две особые точки: (О, 0) и (1, 0), Отбрасывая х' а указанном уравнении, получаем укороченное уравнение ду и с(х у — Л 1 1 Поскольку его характеристическое уравнение ~ ! Л ~ = Л вЂ” 1 = 0 имеет корни с отличными от нуля действитедьными частями, то со~ласно и.

2.2, особая точка (О, 0), являющаяся седлом для укороченного уравнения, будет седлолг и для уравнения (*). Д.и исследования особой точки (1, 0), как обычно, сначала перенесем начюю системы координат в зту точку: х = 1 4 д, и = О. Отбрасывая в полученном уравнении нелинейные члены, приходим к укороченному уравнению до дб 0' лля которого особая точка (О, 0) являезся центром. Таким образом, точка (1, 0) для исходной системы может быть фокусом или центром. В силу симметрии интегральных кривых относительно оси Ох (см. п.2.2), точка (1, 0) — центр. М 653.

Характеристики

Тип файла
DJVU-файл
Размер
3,39 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6417
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее