А.К. Боярчук, Г.П. Головач - Дифференциальные уравнения в примерах и задачах (1109000), страница 65
Текст из файла (страница 65)
32). Для выяснения направления закручивания интегральных кривых (спиралей) построим вектор скорости в точке (1, 0): Рвс. 32 й=!, у= -б. м 632. й = — 2х — 5у, у' = 2*+ 2У М Харакгернстическое уравнение ! -2-Л -5 ~ О имеет корни Л,, = х( 6. Следовательно, особая точка — центр. Направление движения по траекториям определяем по вектору скорости: (х(0, 1); у(0, 1)) = (-5; 2) Рас. 33 (рис. 33). Далее, юш установления уравнений прямых у = Ух, на которых расположены оси эллипсов, найдем экстремумы функции у = г(х, у) = х +у при условии, что Ух = й и*' = -2х — 5У, у = 2х+2У. Из необходимого условия экстремума получаем уравнение ф — = 2хх+ 2уу = О, с(2 подставив в которое значения х, у, у = Ух, после сокращения на х' приходим к уравнению 2(с — 3(с — 2 = О.
Следователыю, на прямых у = 2х, у = — у располохсены оси всех эллипсов. м х у 633. х = Эх — 4У, у = х — 2у. М Из уравнения ~3 — Л -4 находим Льз = -2 —. Так как корни Лгд действительны 1хз и имеют разные знаки, то особая точка — седло. В этом случае семейство интегральных кривых (гипербол) имеет две прямые, 77 проходящие через начало координат х = 2, у = хг (2 — параметр). Для нахождения углового коэффициента У подставим параметрические уравнения прямых в систему лифференциальных уравнений. После исключения параметра 2 получим уравнение для Ул 4йз — 5(с+1 = О, Гл. б.
Успгйчивесть и фазовые траектории следует, что Л, = Л, = О. Это значит, что коэффициенты данных уравнений пропорциональны. Следовательно, прямая у = 2х состо- ит из особых точек. Семейство интегральных кривых лепко найти из уравнения — =2 ~ у=2х+С С~О. бу бх Физически семейство кривых, изобрюкенных на рис. 37, можно интерпретировать как картину ламинарного течения двух противоположно направленных потоков жидкости, причем скорость течения в обоих случаях растет по абсолютной величине по мере удаления от линии их раздела (у = 2х), где она равна нулю. м 637.
й=х, у=у. < Составив и решив характеристическое уравнение, найдем его корни рве. 37 л,=л Значит, точка (О, 0) — дикритический узел. Разделив почленно одно уравнение на другое и проинтегрировав результат, получим семейство прямых у=ух, х=О (рис. 38). Поскольку Ке Л, з > О, то узел неустойчив. м 638. й=о, у=о. м Очевидно, вся плоскость Оху состоит нз особых точек. Семейспю же интегральных кривых на плоскости Оху не существует. м Прмиечвиие. В пространстве Охре интегральные кривые нредетзвдякгг собой прямые, параллельные оси ОГ. 63Д у, 4х-У Зх — 2у М Из характеристического уравнения — ! 0 находим корни Льз=!х2й Следовательно, особая точка — фокус.
Для вьиснения вопроса о направвении закручивания интегральных кривых (спиралей) положим х = 1, у = 0 в системе уравнений: х = Зх — 2у, у =4х — у. Прямечмме. Об устойчивости особой точки исходного уравнения ничего сказать нельзя, твк квк при замене 1 ив — Г уравнение вида не меняет, траекгорин движения (интегральные кривые) не замкнуты и устойчивость в данном случае зависят ст направления двииеиия по траекториям. 648. „= 'х+У. Зх+ 4у м Составив и решив уравнение 3 — Л 4 Л )=0; Лг=5, Лз=-1, Тогда, приняв во внимание, что для этой системы фокус будет неустойчивым, а также направле- ние вектора скорости и(1, 0) = (3, 4), заключаем, что при удалении от начала координат движение по спирали осущеспияется против хода часовой стрелки (рис. 39).
1ь 297 в2, Особые тачка видим, что особая точка — седло. Путем подстановки у = йх в дифференциальное уравнение находим интегральные прямые (асимптоты семейства деформированных гипербол). Имеем 2+й 1 й= ~ й~= —, 3+ 4й 2' Таким образом, две прямые )гг = — 1 ° у= — у=-х 2' — искомые. Далее, ясно, что особая точка неустойчива (в данном случае, в отличие от предыдущего примера, характер тривиального решения не зависит от направления движения по траекториям).
Примерный вид семейства изображен на рис. 40. М В задачах 641-647 найти и исследовать особые точки данных уравнений и систем. (141, 2х+ у ° у = х — 2у — 5 м Из системы уравнений 2х+ у = О, х — 2у — 5 = 0 находим координаты особой точки: х = 1, у = -2. Далее делаем перенос начала координат в эту точку: 0 х=!+6, у=-2+и. В результате приходим к уравнению: 49 Ц+О и( 6 — 20 Поскольку корни уравнения 1 — Л -2 гсы 2 1Л=О имеют вид: Льз = 1 х 21, то утверждаем, что особая точка — фокус. Положив в системе 6=6-29, 9=26+9 6 = 1, О = О, получим вектор скорости и(1, 0) = (1, 2).
Если принять еще во внимьэгие, что для этой системы точка (О, 0) — неустойчивый фокус, то легко видеть, что при движении по спиралям от начала координат О,69 будет происходить вращение щютив хода часовой стрелки (рис. 41). Заметим, что, как в примере 639, об устойчивости фокуса ничего сказать нельзя. м гу хз — уз — 1 м Из системы 2у=О, х — у †1 2 2 находим координаты особых точек (-1, 0); (1, 0). Сделав замену х = -1 + 6, у = О, приведем данное уравнение к виду ОО 20 пч ч~ — Оз — 26 Нарялу с уравнением (1) рассматриваем "укороченное" уравнение ог) йб -6' 298 Гл. б.
Устойчивость и фазавме траеатории полученное, очевидно, путем отбрасывания нелинейных членов из уравнения (1). Поскольку действительные части корней характеристического уравнения, соответствующего последнему дифференциальному, отличны от нуля (Л,, = ф2), а также функция 2 — +» (у» О)»-» 8 — »1 = о ((б + О )у+») при б' + От 0 (е > 0), то согласно п. 2.2 особая точка уравнении (1) будет того х»е типа, что особая точка укороченного уравнения.
Более того, картины расположения интегральных кривых уравнения (1) и укороченного уравнения в малой окрестности особой точки булут примерно одинаковы (точнее, чем меньше окрестность, тем больше совпадение картин). Таким образом, точка (-1, 0) — седло для исходного уравнения. Далее, сделав замену в = 1+ с, у = гг, приходим к уравнению »»О 20 ,Ц ь»г, т + 2ь» и соответствующему ему укороченному О К б Укороченное уравнение имеет особую точку (О, 0), которая, как следует из уравнения О 2 — Л ( является дикритическим узлом.
По причине, изложенной выше, точка (1, О) будет дикритическим узлом и для исходного уравнения. М у+ г)+20*' ° у = *+ у+1 м Из системы уравнений у+ ь»1+20аз = О, х+ у+ 1 = 0 находим особые точки: (О, -!); (2, — 3). Исследуем каждую из них. С помощью замены х = б, у = -! + О данное уравнение приводим к вцлу: ! »(О 0 — 1.1. (1+ 20О»»1+ 58 — Л»збз + о(бз) 4б (+0 б+») Укороченное уравнение г(0 О+ 58 б+ как следует из соответствующего ему характеристического 5 1 — Л ! имеет седло (Л»,з — — 1 ~ »/5). Далее, функция 4 — — б + о(Г ) = о(г ), » = )((~+ г!', е > 0; 75 з т»»-» поэтому, согласно п. 2.2, точка (О, — ! ) является седлом и для исходного дифференциального уравнения.
Положив я = 2+ б, у = — 3 +»1, из данного уравнения аналогично предыдущему получаем: »»О Ч+ 27с+0(с ) »!( б+ 0 Составив и решив характеристическое уравнение /20 20 =О; Л»з=)~ Г 1-Л ' у 27' 27 убежзцемся в том, что (О, 0) — узел.' учитъпая еше соотношение ОКз) = о(г'~), соп»асио п, 2,2 заключаем, что точка (2, -3) является узлом и для данного диф»реренциального уравнения, м 299 у 2. Особые точки 644.
х = 1п(2 — уз), у м е' — е". ~ Сначала находим действительные решения системы уравнений 1п(2 — у') = О и е* — е" = О. Из первого уравнения получаем у = х1; из второго — х = х). Следовательно, точки (-1, -1) и (1, 1) — особые. Далее, исследуем каждую из этих точек. Полагая в данных дифференциальных уравнениях х = Ы + (, у = х1 + г), приводим их к виду: 4 = 1п(1 Т 29 — 9 ), г) = е (е — е").
Отаода, применяя формулу Маклорена, имеем: (=~29+0(9)> О=с (С вЂ” 9)+0(г ). Решив характеристическое уравнение е*з Лз = — — — — Т2е э! 2 4 — Л Т2 1 е+' е*' ! = О; Л, = — — + — ~ 2е*', е — е — Л ! 4 соответствующее укороченной системе С=т29, ОмЕ '(( — О), видим, что первая особая точка (ей соответствует везде верхний знак) — устойчивый фокус, а вторая — седло. В силу и. 2.2 утверждения относятся и к исследуемой системе, М б45.(= з: т2 — г '=„,и '+ >. < Система уравнений 4= — 9, Ом-21. Поскольку корни ее характеристическою уравнения Л, з = хтт2, то особая точка — седло. А то~да по и. 2.2 точка (О, -2) являетсл седлом и лля исходной системы. Теперь переносим начало координат в точку (-2, 2), полохгив х = -2+ (, у = 2+ 9.