Главная » Просмотр файлов » Г.И. Архипов, В.А. Садовничий, В.Н. Чубариков - Лекции по математическому анализу

Г.И. Архипов, В.А. Садовничий, В.Н. Чубариков - Лекции по математическому анализу (1108924), страница 104

Файл №1108924 Г.И. Архипов, В.А. Садовничий, В.Н. Чубариков - Лекции по математическому анализу (Г.И. Архипов, В.А. Садовничий, В.Н. Чубариков - Лекции по математическому анализу) 104 страницаГ.И. Архипов, В.А. Садовничий, В.Н. Чубариков - Лекции по математическому анализу (1108924) страница 1042019-04-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 104)

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ Ф'УНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ.....,............ 314 Лекция 21 у 1. Непрерывные функции в 1к"........,....,...,....... т 2. Дифференцируемые функции в И".................. Лекция 22 т 3, Дифференцярование сложной функции.............. 320 т 4. Производная по направлению. Градиент........., .. 321 т 5. Геометрический смысл дифференциала...,...,...... 323 Лекция 23 1 6. Частные производные высших порядков............. т 7. Дифференциалы высших порядков. Формула Тейлора. 326 373 388 Лекция 24 4 8. Приложение формулы Тейлора.

Локальный экстремум функции многих переменных................ 330 1 9. Неявные функции . 332 Лекция 25 3 10. Система неявных функций........................... 337 1 11. Условный экстремум функции многих переменных, 341 3 ! 2. Дифференцируемые отображения, Матрица Якоби . 344 ЧАСТЬ Н!. ФУНКНИОНА ЛЬН ЫЕ РЯДЫ И НА РАМЕ ТРИ ЧЕСКИЕ ИНТЕГРА ЛЫ Глава ХЪ'. 'ЧИСЛОВЫЕ РЯДЫ 347 Лекция 1 11. Основные свойства сходящихся рядов.

Критерий Коши 347 Лекция 2 3 2. Ряды с неотрицательными членами.....,..., ..... 355 Лекция 3 1 3. Основные признаки сходимости для рядов с неотрицательными членами. 360 Лекция 4 3 4. Абсолютная и условная сходимость рядов. Ряды Лейбница . 368 3 5. Признаки Абеля и Дирихле ........................ 370 я7екция 5 3 6.

Перестановки членов ряда...........,.. Лекция 6 4 7. Арифметические операции над сходящимися рядами 376 Лекция 7 3 8. Двойные и повторные ряды 381 Глава ХЪ'1. ФУНКЦИОНАЛЬНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ И РЯДЫ. Лекция 8 3 1. Сходимость функционального ряда............,..... 388 3 2.

Равномерная сходимость ..........................., 391 Лекция 9 1 3. Критерий равномерной сходимости функциональной последовательности. 394 1 4. Признаки равномерной сходимости ................. 396 Лекция !О 1 5. Теорема Дини . 401 3 6. Почленное дифференцирование и интегрирование ряда .

402 Лекция 11 1 7. Двойные и повторные пределы по базе множеств . 407 ез! 416 444 471 Лекция 12 2 8. Степенные ряды 411 Лекция 13 2 9. Бесконечные произведения........................... Лекция 14 2 10. Бесконечные определители........................... 422 2 11.Равностепенная непрерывность и теорема Арцела.. 425 Глава Х'ЧП. ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. 428 Лекция 15 2 1. Собственные параметрические интегралы и их непрерывность..................................... 428 2 2. Дифференцирование н интегрирование собственных параметрических интегралов ......................... 431 Лекция 16 2 3.

Теорема Лагранжа................. 436 Лекция 17 2 4. Равномерная сходимость по Гейне.................... 439 2 5. Эквивалентность двух определений равномерной сходимости 440 Лекция 18 2 6. Равномерная сходимость несобственных параметрических интегралов Лекция 19 2 7. Непрерывность, дифференцируемость и интегрируемость по параметру несобственных интегралов....

449 Лекция 20 2 8. Несобственные интегралы второго рода............. 456 2 9. Применение теории параметрических интегралов .. 458 Лекция 21 2 10. Интегралы Эйлера первого и второго рода......... 461 Лекция 22 2 11. Формула Стирлинга........................ 467 Глава ХЪ'Ш. РЯДЫ И ИНТЕГРАЛЫ ФегРЬЕ............. 471 ' Лекция 23 2 1. Представление дробной доли вещественного числа тригонометрическим рядом. Формула суммирования Пуассона. Суммы Гаусса ............................

Лекция 24 2 2. Неравенство Бесселя. Замкнутость и полнота ортонормированной системы функций................,. 482 Лекция 25 2 3. Замкнутость тригонометрической системы функций 488 506 517 544 556 1 4. Простейшие свойства тригоиометрических рядов Фурье и7екция 26 3 5. Интегральное представление для частичной суммы ряда Фурье.

Принцип локализации Римана ........ 497 3 6. Признаки поточечной сходимости рядов Фурье...., 501 Лекция 27 ~ 7. Поведение коэффициентов Фурье................,... 3 8. Разложение котаигенса на простейшие дроби и представление синуса в виде бесконечного произведения 509 1'9. Задача Кеплера и ряды Бесселя.............,....., 511 Лекция 28 3 10. Ядро Фейера и аппроксимационная теорема Вейерштрасса . 514 1 11.

Интеграл Дирихле и разложение на простейшие дроби. Лекция 29 '3 12.Преобразование Фурье и интеграл Фурье........... 522 .Лекция 30 1 13. Метод Лапласа и метод стационарной фазы........ 534 ЧАСТЬ 11'. КРАТНЫЙ ИНТЕГРАЛ РИМАНА. ПОВЕРХНОСТНЫЕ ИНТЕГРАЛЫ Глава Х1Х. КРАТНЫЕ ИНТЕГРАЛЫ....................... Лекция 1 ~ 1. Двойной интеграл Римана как предел по базе..... 544 1 2. Суммы Дарбу и их свойства...............,......... 547 Лекция 2 3 3. Критерий Римана интегрируемости функции на прямоугольнике..., ..., ....... 550 1 4. Специальный критерий интегрируемости функции на прямоугольнике. 553 Лекция 3 ~ 5.

Иэмеримость по Жордану цилиндрической криволинейной фигуры 1 6. Понятие двойного интеграла Римаиа по ограниченной области, измеримой по Жордаиу ............... 558 Лекция 4 ~ 7. Основные свойства двойного иитеграла.............. 562 ~ 8. Переход от двойного иитеграла к повторному ......

564 ~ 9. Интегрируемость непрерывной функции на измеримом множестве . 566 Лекция 5 з 10. Многократные интегралы 568 693 1 11. Свойства гладкого отображения на выпуклом множестве Лекция 6 з 12. Объем области в криволинейных координатах. Теорема о замене переменных в кратном интеграле Лекция 7 з 13. Критерий Лебега Лекция 8 з 14. Несобственные кратные интегралы.................. 27екция 9 з 15. Плошадь поверхности з 16.Плошадь га-мерной поверхности в евклидовом пространстве п измерений. Глава ХХ.

КРИВОЛИНЕЙНЫЕ И ПОВЕРХНОСТНЫЕ ИНТЕГРАЛЫ. Лекция 10 1 1. Криволинейные интегралы.........................., 1 2. Свойства криволинейных интегралов................ Лекция 11 1 3. Криволинейные интегралы второго рода по замкнутому контуру. Формула Грина....................... е7екция 12 з 4. Поверхностные интегралы ........................... з 5.

Согласование ориентации поверхности.и ее границы Лекция 13 з 6. Формула Стокса 1 7. Формула Гаусса — Остроградского Лекция 14 з 8. Криволинейные интегралы, зависящие только от пределов интегрирования 1 9. Влементы векторного анализа . Л ц 16 1 10.Потенциальное и соленоидальное векторные поля Глава ХХ1. ОБЩАЯ ФОРМ еЛА СТОКСА................. Лекция 16 1 1. Понятие ориентированной многомерной поверхности з 2. Согласование ориентаций поверхности и ее границы в общем случае. 1 3.

Дифференциальные формы з 4. Замена переменных в дифференциальной форме... ..7екция 17 1 5. Интеграл от дифференциальной формы............. 1 6. Операция внешнего дифференцирования............ 1 7. Доказательство обШей формулы Стокса............. 572 588 622 624 651 654 ббб 575 595 600 603 609 614 618 630 633 639 645 64г> 647 649 649 694 Лекция 18 Дополнение.

Равномерное распределение значений чи еловых последовательностей на отрезке 1 1. Понятие равномерного распределения. Лемма об оценке коэффициентов Фурье......................,. 1 2. Критерий Г.Вейля Примерные вопросы и задачи к коллоквиумам и экзаменам Литература 660 660 664 674 684 .

Характеристики

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6451
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее