Примерная программа дисциплины Мат. Анализ 1 курс (1108251)
Текст из файла
Примерная программа дисциплины
«МАТЕМАТИЧЕСКИЙ АНАЛИЗ. 1 КУРС »
1. АННОТАЦИЯ КУРСА «МАТЕМАТИЧЕСКИЙ АНАЛИЗ 1 КУРС »
Целью курса является изучение методов, задач и теорем математического анализа, их применение к решению задач прикладной математики и информатики.
Основу данного курса составляют дифференциальное и интегральное исчисление функций одной переменной, а также дифференциальное исчисление функций нескольких переменных и теория вещественных числовых рядов.
В первую часть курса (1 семестр) входит построение теории вещественных чисел, определение и изучение основных свойств пределов числовых последовательностей, определение и развитие понятия предела функции одной переменной и связанного с ним понятия непрерывности функции, определение понятий производной и первообразной от функции одной переменной и обоснование формул и правил дифференциального и интегрального исчислений. На основе изученного материала рассматриваются понятия локального экстремума функции, перегиба её графика, асимптот графика и способы их отыскания. Рассматривается алгоритм отыскания наибольшего (наименьшего) значения функции на множестве, а также общая схема полного исследования функции и построения её графика.
Во вторую часть курса (2 семестр) входит построение теории определённого интеграла, приближённые методы его вычисления и геометрические приложения (определение и вычисление длины дуги кривой, площадей и объёмов различных геометрических фигур). Вводится понятие о несобственных интегралах I и II рода и изучаются их основные свойства, признаки сходимости и правила вычисления. Определяются основные понятия и строится теория дифференциального исчисления для функции нескольких переменных. Вводятся понятия о неявных функциях одной и нескольких переменных и изучаются условия их существования, единственности и дифференцируемости. Рассматриваются понятия условных и безусловных локальных экстремумов функций нескольких переменных и способы их отыскания. Изучается теория вещественных числовых рядов, и рассматриваются связанные с ними понятия бесконечных произведений и двойных числовых рядов.
-
МЕСТО ДИСЦИПЛИНЫ В УЧЕБНОМ ПЛАНЕ.
В результате изучения дисциплины студент должен: |
Знать и уметь применять на практике основные методы математического анализа уметь понимать и применять на практике компьютерные технологии для решения различных задач математического анализа, владеть навыками решения практических задач математического анализа |
Обязательный курс для студентов 1 курса,
читается в 1 и 2 семестрах (Цикл ЕМНД),
Лекции – 102 часа, семинары – 102 часа,
Зачёт и экзамен в 1 семестре, зачёт и экзамен во 2 семестре,
За курс отвечает кафедра общей математики,
Авторы программы: академик Ильин В.А., доцент Фоменко Т.Н.,
Лектор 2008/09 учеб. года: доцент Фоменко Т.Н.
3. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ.
Перечень разделов курса (в том числе перечень тем семинарских занятий, при наличии описание практикума, коллоквиума).
3.1 ЛЕКЦИИ, I СЕМЕСТР
1. Вещественные числа
Введение. Предмет математического анализа. Естествознание как источник основных понятий математического анализа.
Теория вещественных чисел. Элементы теории множеств. Числовые множества, натуральные, целые, рациональные числа. Необходимость расширения множества рациональных чисел. Вещественное число как бесконечная десятичная дробь. Понятие о числовой оси. Сравнение вещественных чисел. Существование точных граней у ограниченных числовых множеств. Арифметика вещественных чисел. Понятие счётных и несчётных бесконечных множеств, их неэквивалентность. Несчётность множества вещественных чисел. Понятие о полноте числового множества относительно заданных правил и свойств. Полнота множества вещественных чисел.
2. Предел числовой последовательности
Последовательности вещественных чисел, понятие предела. Понятие о числовой последовательности. Ограниченные, неограниченные, бесконечно малые и бесконечно большие последовательности. Предел последовательности. Свойства сходящихся числовых последовательностей. Критерий Коши сходимости последовательности. Сходимость монотонных последовательностей. Число “e” как предел монотонной последовательности.
Частичные пределы последовательности. Предельные точки (частичные пределы) последовательности и предельные точки числового множества. Теорема Больцано–Вейерштрасса о существовании частичного предела у ограниченной последовательности. Теорема о существовании верхнего и нижнего пределов у числовой последовательности.
3. Предел и непрерывность функции одной переменной
Предел функции одной вещественной переменной. Отображения множеств, в том числе взаимно-однозначные. Понятие о функции как однозначном отображении числовых множеств. Способы задания функций. Предел (предельное значение) функции в точке – определения по Коши и по Гейне и их эквивалентность. Односторонние пределы. Расширенная числовая ось. Пределы функций в бесконечно удалённых точках и бесконечные пределы. Свойства функций, имеющих (конечные) пределы. Критерий Коши существования предела функции. Ограниченные, неограниченные, бесконечно малые, бесконечно большие функции. Асимптотическое сравнение функций. Символы о-малое, О-большое, О*(О-большое со звёздочкой).
Непрерывность функции в точке и на множестве. Понятие о непрерывности функции в точке. Точки разрыва функции и их классификация. Суперпозиция функций (сложная функция). Непрерывность суперпозиции непрерывных функций. Локальные свойства непрерывных функций. Непрерывность функции на множестве. Свойства функций, непрерывных на замкнутом отрезке. 2 теоремы Вейерштрасса. Понятие о равномерной непрерывности функции на множестве. Теорема Кантора о равномерной непрерывности функции на замкнутом отрезке. Монотонные функции. Понятие об обратной функции. Существование односторонних пределов у монотонных функций. Условия существования и непрерывности обратной функции. Первый и второй замечательные пределы. Основные свойства простейших элементарных функций и их непрерывность.
4. Дифференцирование функций одной переменной
Производные и дифференциалы первого и высших порядков. Производная функции в точке, её геометрический и физический смысл. Понятие дифференцируемости функции в точке и существование производной. Первый дифференциал функции. Связь дифференцируемости и непрерывности функции в точке. Производные и дифференциалы суммы, произведения, частного двух функций. Производная сложной функции и инвариантность формы записи первого дифференциала. Производная обратной функции и функции, заданной параметрически. Производные простейших элементарных функций.
Формула Лейбница. Примеры производных высших порядков простейших элементарных функций.
Применение производных для исследования свойств функций. Возрастание и убывание функции в точке. Локальный экстремум функции. Необходимое условие существования локального экстремума дифференцируемой функции. Критерий нестрогой и достаточное условие строгой монотонности дифференцируемой функции. Теоремы Ролля, Лагранжа, Коши. Следствия из теоремы Лагранжа. Правила Лопиталя раскрытия неопределённостей. Формула Тейлора. Выражение остаточного члена в формуле Тейлора в общей форме Шлёмильха-Роша, а также в формах Лагранжа, Коши и Пеано. Формула Маклорена. Примеры разложения по формуле Тейлора-Маклорена элементарных функций.
5. Интегрирование функций одной переменной
Понятие первообразной функции. Связь операций дифференцирования и интегрирования. Основные методы вычисления неопределённого интеграла: метод подстановки (замена переменной), интегрирование по частям. Интегрирование рациональной функции путём разложения её в сумму простейших дробей. Интегрирование некоторых иррациональных выражений – подстановки Эйлера, тригонометрические и другие подстановки. Интегрирование тригонометрических функций – универсальная тригонометрическая подстановка, другие подстановки.
6. Исследование функции и построение её графика
Достаточные условия существования локального экстремума функции. Краевые экстремумы. Общая схема отыскания наибольшего (наименьшего) значения функции на замкнутом отрезке. Направление выпуклости графика функции. Достаточные условия выпуклости вверх (вниз) графика функции. Понятие точки перегиба графика функции. Достаточные условия существования перегиба графика функции. Вертикальные и наклонные асимптоты графика функции, их отыскание. Общая схема исследования функции и построения её графика.
3.2 ЛЕКЦИИ, II СЕМЕСТР
7. Определённый интеграл Римана
Определённый (собственный) интеграл Римана. Разбиение отрезка. Размеченное разбиение. Интегральная сумма функции по данному размеченному разбиению. Определённый интеграл как предел интегральных сумм. Суммы Дарбу и их свойства. Интегралы Дарбу. Критерии интегрируемости функции на отрезке в терминах сумм Дарбу и в терминах интегралов Дарбу. Основные классы интегрируемых функций – непрерывные, монотонные, кусочно-непрерывные функции. Свойства определённых интегралов. Формула Ньютона-Лейбница. Существование первообразной у непрерывной функции. Первая и вторая теоремы о среднем значении определённого интеграла. Замена переменной и интегрирование по частям в определённом интеграле.
Несобственный интеграл Римана. Понятие о несобственных интегралах первого и второго рода. Критерий Коши сходимости несобственного интеграла. Замена переменной и интегрирование по частям несобственного интеграла. Понятие об абсолютной и условной сходимости несобственного интеграла первого рода. Признаки сходимости несобственных интегралов первого рода: признаки сравнения, признак Абеля-Дирихле. Связь несобственных интегралов первого и второго рода.
8. Приложения и приближённые вычисления интеграла Римана
Геометрические приложения определённого интеграла. Способы задания кривых на плоскости и в пространстве. Простые и параметризуемые кривые. Длина дуги спрямляемой кривой. Квадрируемая плоская фигура и её площадь. Кубируемое пространственное тело и его объём. Вычисление площадей плоских фигур, объёмов тел вращения, площадей поверхностей вращения.
Приближённые методы вычисления определённых интегралов и отыскания корней уравнений. Методы отыскания корней уравнений: метод последовательных приближений, метод хорд, метод касательных (Ньютона). Приближённое вычисление определённых интегралов Римана: метод прямоугольников, метод трапеций, метод Симпсона. Оценки погрешностей.
9. Предел последовательности в En и предел функции нескольких переменных
Предел последовательности в n-мерном евклидовом пространстве. Евклидово пространство , скалярное произведение в нём. Норма элемента и её свойства. Метрика в пространстве
. Сходящиеся последовательности в
и их свойства. Критерий Коши сходимости последовательности в
. Шар, сфера в
, окрестности точки, ограниченные и неограниченные, открытые и замкнутые множества. Кривая в
. Понятие области в
. Предельные точки множества в
. Частичные пределы (предельные точки) последовательностей. Теорема Больцано-Вейерштрасса для последовательностей в
.
Предел и непрерывность функции нескольких переменных. Функция нескольких переменных, её область определения, область значений. Понятия предела (предельного значения) функции нескольких переменных по Коши и по Гейне и их эквивалентность. Критерий Коши существования предела функции нескольких переменных. Непрерывность функции нескольких переменных в точке. Локальные свойства непрерывных функций. Понятие сложной функции нескольких переменных, условия её непрерывности. Непрерывность функции нескольких переменных в замкнутой области. 2 теоремы Вейерштрасса. Понятие равномерной непрерывности функции на множестве. Теорема Кантора для функции нескольких переменных.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.