Примерная программа дисциплины Мат. Анализ 1 курс (1108251), страница 3
Текст из файла (страница 3)
№№ 3365, 3371, 3390, 3395, 3399, 3402 (а), 3403.
Дома: 3364, 3372, 3383, 3398, 3401, 3427, 3408 (а,б).
Дополнительно: 23(а,б,в,г), 24, 25, 26.
18 занятие. Производная по направлению. Градиент, его геометрические приложения. Экстремум (безусловный) функции нескольких переменных.
№№ 3341, 3345, 3534, 3539, 3554, 3621, 3628, 3631, 3636.
Дома: 3342, 3347, 3533, 3538, 3540, 3624, 3627, 3639, 3644.
19 занятие. Условный экстремум функций n-переменных. (в том числе заданных неявно).
№№ 3651, 3656, 3660, 3668, 3661, 3676, 3679.
Дома: 3653, 3655, 3667, 3670, 3664, 3672, 3675, 3677.
20 занятие. Контрольная работа №3.
9. Числовые ряды
21 занятие. Знакопостоянные ряды. Критерий Коши, признаки сравнения. Признаки Даламбера, Коши, Рабе и Гаусса. Интегральный признак Коши.
№№ 2549, 2557, 2569, 2576, 2581, 2586, 2597 (а), 2598, 2601, 2619.
Дома: 2552, 2562, 2567, 2568, 2575, 2577, 2583, 2589(а), 2599, 2600.
Дополнительно: [5], гл.1, §6, №№15,18,20,29,31, 52, 53, 63, 89, 106, 164, 225, 283.
22 занятие. Знакопеременные ряды. Абсолютная и условная сходимость. Признак Лейбница. Признаки Абеля, Абеля-Дирихле.
№№ 2701, 2666, 2661, 2696, 2668, 2673(а), 2682, 2689, 2698(а).
Дома: 2698(б), 2672, 2663, 2704, 2676, 2679, 2683, 2684, 2686.
Дополнительно: [5], гл.1, §6, №№ 361, 367, 529, 374, 375, 384, 386, 434, 467, 502,
§7, №42.
5. ТЕМАТИЧЕСКИЙ ПЛАН КУРСА.
Распределение разделов по аудиторным часам (Л З -лекционные занятия, П З -практические занятия, С Р - самостоятельная работа, А З - аудиторные занятия)
№ | Название темы | Ауд. зан. (часы) | С Р | ||
Л З | П З | ||||
П е р в ы й с е м е с т р | |||||
1. | Вещественные числа | 6 | 6 | 12 | |
2. | Предел числовой последовательности | 11 | 11 | 22 | |
3. | Предел и непрерывность функции одной переменной | 11 | 11 | 22 | |
4. | Дифференцирование функций одной переменной | 11 | 11 | 22 | |
5. | Интегрирование функций одной переменной | 8 | 8 | 14 | |
6. | Исследование функции и построение её графика | 5 | 5 | 12 | |
В т о р о й с е м е с т р | |||||
7. | Определённый интеграл Римана | 10 | 10 | 20 | |
8. | Приложения и приближённые вычисления интеграла Римана | 6 | 6 | 12 | |
9. | Предел последовательности в En и предел функции нескольких переменных | 5 | 5 | 10 | |
10. | Дифференцирование функций нескольких переменных | 6 | 6 | 12 | |
11. | Неявные функции, зависимость и независимость функций | 4 | 4 | 8 | |
12. | Локальный экстремум (условный и безусловный) функции нескольких переменных | 4 | 4 | 8 | |
13. | Числовые ряды | 12 | 12 | 24 | |
14. | Бесконечные произведения, двойные и повторные ряды | 3 | 3 | 6 | |
Итого: | 102 | 102 | 204 | ||
Всего (часы): (аудиторные занятия и самостоятельная работа) | 408 |
6. ЛАБОРАТОРНЫЙ ПРАКТИКУМ/ПРАКТИКУМ НА ЭВМ.
(Приводится примерный перечень лабораторных работ с указанием разделов дисциплины. Если лабораторный практикум не предусматривается, то делается запись «не предусмотрен»).
Лабораторный практикум не предусмотрен.
7. КУРСОВОЙ ПРОЕКТ (КУРСОВАЯ РАБОТА)
Характеризуются тематика проекта (работы) и достигаемые результаты – компетенции.
Курсовой проект не предусмотрен
-
Ильин В.А. Куркина А.В. Высшая математика. Изд-во «Проспект», Изд-во МГУ, Москва, 2004г.
-
Демидович Б.П. Сборник задач и упражнений по математическому анализу. М.: Наука, 1990, АСТ, Астрель, Москва, 2004г.
8. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ
8.1. Рекомендуемая литература.
Основная литература:
-
Ильин В.А., Садовничий В.А., Сендов Бл. Х. Математический анализ. Часть 1. Изд-во «Проспект», Изд-во МГУ, Москва, 2004г.
-
Ильин В.А., Позняк Э.Г. Основы математического анализа, ч.1, М.: Наука, 1982. М.: Физматлит, 1998, 2004.
-
Ильин В.А. Куркина А.В. Высшая математика. Изд-во «Проспект», Изд-во МГУ, Москва, 2004г.
-
Демидович Б.П. Сборник задач и упражнений по математическому анализу. М.: Наука, 1990, АСТ, Астрель, Москва, 2004г.
Дополнительная литература:
-
Кудрявцев Л.Д. Курс математического анализа, т.1, М.: Высшая школа, 1988.
-
Никольский С.М. Курс математического анализа, т.1, М.: Наука, 1983.
-
Рудин У. Основы математического анализа, М.: Мир, 1976.
-
Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления, т.1,2, М.: Физматлит, 2001.
-
Виноградова И.А., Олехник С.Н., Садовничий В.А. Задачи и упражнения по математическому анализу. Часть 2. Изд-во «Дрофа», Изд-во МГУ, Москва, 2004.
-
Кудрявцев Л.Д. и др. Сборник задач по математическому анализу, т.1, М.: Наука, 1984; т.2, М.:.Наука, 1986, т.3, М.: Физматлит, 1995.
-
Садовничая И.В., Тихомиров В.В., Фоменко Т.Н., Фомичёв В.В. Методическая разработка по математическому анализу для потока бакалавров, I курс. МГУ, ВМиК, Москва, 2009.
9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ
Компьютерный класс ПЭВМ с микропроцессором не ниже Pentium IV, объем ПЗУ не меньше 2-3 ГБ, объем ОЗУ не меньше 512 МБ со средой MatLab (версии 7 и выше), а также пакетами Control System и Robust.
10. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ
ПО ОРГАНИЗАЦИИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ
Содержание раздела формируется по усмотрению авторов программы (отражаются интерактивные формы обучения).
10.1. Список вопросов, выносимый на экзамен( и/ или содержание тестов)
1 семестр.
Вещественные числа и правила их сравнения. Теорема о существовании точной верхней (нижней) грани у ограниченного сверху (снизу) множества вещественных чисел.
Приближение вещественного числа рациональным. Арифметические операции над вещественными числами. Свойства вещественных чисел.
Счетные множества и множества мощности континуум. Неэквивалентность множества мощности континуум счетному множеству.
Ограниченные и неограниченные последовательности. Бесконечно большие и бесконечно малые последовательности. Их основные свойства.
Понятие сходящейся последовательности. Основные теоремы о сходящихся последовательностях (единственность предела, ограниченность сходящейся последовательности, арифметические операции над сходящимися последовательностями).
Предельный переход в неравенствах. Теорема о пределе монотонной ограниченной последовательности. Число е.
Понятие предельной точки последовательности. Теорема о существовании верхнего и нижнего пределов у ограниченной последовательности. Теорема Больцано-Вейерштрасса.
Необходимое и достаточное условие сходимости последовательности (критерий Коши).
Два определения предельного значения функции (по Гейне и по Коши) и доказательство их эквивалентности. Критерий Коши существования предельного значения функции.
Арифметические операции над функциями, имеющими предельное значение. Бесконечно малые и бесконечно большие (в данной точке) функции и принципы их сравнения.
Понятие непрерывности функции в точке и на множестве. Арифметические операции над непрерывными функциями. Классификация точек разрыва.
Локальные свойства непрерывных функций. Непрерывность сложной функции.
Обратная функция. Условия непрерывности монотонных функций и обратных функций.
Простейшие элементарные функции и их основные свойства.
Замечательные пределы. Предельный переход в неравенствах.
Прохождение непрерывной функции через любое промежуточное значение.
Ограниченность функции, непрерывной на сегменте (первая теорема Вейерштрасса).
О достижении функцией, непрерывной на сегменте, своих точной верхней и нижней граней (вторая теорема Вейерштрасса).
Понятие равномерной непрерывности. Теорема Кантора.
Понятие производной и дифференцируемости функции в точке.
Правила дифференцирования суммы, произведения и частного двух функций, сложной функции и обратной функции. Формулы дифференцирования простейших элементарных функций.
Первый дифференциал функции. Инвариантность его формы. Использование дифференциала для приближенного вычисления приращения функции.
Производные и дифференциалы высших порядков, формула Лейбница. Дифференцирование функции, заданной параметрически.
Понятие возрастания (убывания) в точке и локального экстремума функции. Достаточное условие возрастания (убывания) и необходимое условие экстремума дифференцируемой в данной точке функции.
Теорема о нуле производной (теорема Ролля) и ее геометрический смысл.
Формула конечных приращений (формула Лагранжа). Следствия теоремы Лагранжа.
Обобщенная формула конечных приращений (формула Коши).
Раскрытие неопределенностей (правила Лопиталя).
Формула Тейлора с остаточным членом в общей форме (в форме Шлемильха-Роша).
Остаточный член в формуле Тейлора в форме Лагранжа, Коши и Пеано. Его оценка.
Разложение по формуле Тейлора-Маклорена элементарных функций. Примеры приложений формулы Тейлора для приближенных вычислений элементарных функций и вычисления пределов.
Понятие первообразной и неопределенного интеграла функции. Простейшие свойства неопределенного интеграла. Таблица неопределенных интегралов.