Ответы на теорию (1106639), страница 2
Текст из файла (страница 2)
∆Sобщ = ∆rS + ∆Sвн.сред = ∆rS - -∆rH/T = 319,2 Дж/К - положительно
∆rS - -∆rH/T > 0 или ∆rH - T∆rS < 0. Величину ∆rH - T∆rS обозначают G и называют энегрией Гиббса реакции
Энергия Гиббса любого простого вещества, являющегося стандартным состоянием элемента, принимается равной нулю при любой температуре.
Стандартная энергия Гиббса образования вещества - это изменение энергии Гиббса при образовании 1 моля вещества в его стандартном состоянии из составляющих его веществ, являющихся стандартными состояниями соответствующих элементов.
При расчете стандартной энергии Гиббса растворов образования ионов принимается, что для иона Н+ стандартная энергия Гиббса равна нулю при всех температурах, как и ∆fH и S
10. Возможность самопроизвольного протекания реакции определяется двумя факторами: 1) Энтальпийный фактор - стремление системы к понижению внутренней энергии за счет экзотермической реакции. 2) Энтропийный фактор - стремление системы к увеличению неупорядоченности в расположении частиц за счет теплового движения
Условия самопроизвольного и несамопроизвольного протекания процессов:
∆rH>0, ∆rS>0 - Реакции самопроизвольны (∆rG<0) при высоких температурах
∆rH>0, ∆rS<0 - Реакции при любых температурах несамопроизвольны (∆rG>0)
∆rH<0, ∆rS>0 - Реакции самопроизвольны (∆rG<0) при любых температурах
∆rH<0, ∆rS<0 - Реакции самопроизвольны (∆rG<0) при низких температурах.
Процесс назывется самопроизвольной, если за его счет можно получить полезную работу
11. Для того, чтобы охарактеризовать отклонение термодинамических свойств вещества в конкретной системе от его свойств в стандартном состоянии используется термодинамическая активность данного вещества или иона.
Активность - безразмерная величина. Активность вещества в стандартном состоянии равна 1. Энергия Гиббса образования вещества, состояние которого отличается от стандартного, расчитывается по формуле: ∆fG = ∆fG + RTlna
Активность чистых жидкостей и твердых веществ равна 1
Активность вещества в газообразном состоянии численно равна его парциальному давлению, выраженному в атмосферах.
Активность растворенных веществ или ионов численно близка к их концентрации, выраженной в моль/л.
Активность веществ в разбавленных растворах изменяется в пределах от 0 до 1, а в концентрированных растворах и газовых смесях при высоких давлениях она может принимать очень большие зачения.
CH3COOH = CH3COO- + H+
∆fG(H+p) = ∆fG(H+p) + RTlnC(Н+р) Пусть в некий момент времени концентрация молекул уксусной кислоты равна 1 моль/л, а концентрации ацетат-ионов и ионов водорода составляют 0,0001 моль/л. Тогда:
∆fG(H+p) = 0 + 8,314*298*ln(10^-4) = -22819 Дж/моль = -22,8 кДж/моль
∆fG(CH3COO-p) = -369400 + 8,314*298*ln(10^-4) = -392,2 кДж/моль
∆fG(CH3COOH p) = -396,5 кДж/моль
Тогда ∆rGдисс = (-392,2 - 22,8) - (-396,5) = -19,1 кДж
Выводы????
12. Химическое равновесие - состояние, не изменяющееся во времени, в котором реакционная смесь содержит как исходные вещества, так и продукты реакции.
Динамическое равновесие - состояние системы остается неизменным потому что влияние каждого из идущих процессов уравновешивается обратным, имеющим точно такую же скорость.
Условия химического равновесия: 1) В системе должны протекать, причем с достаточно большой скоростью, как прямой, так и обратный процессы, т.е. неизменность состояния системы во времени должна быть результатом равенства скоростей прямого и обратного процессов, а не их отсутствия
2) Система должна быть закрытой или изолированной (В открытых процессах - стационарное состояние: пламя газовой горелки)
3) Неизменность во времени должна поддерживаться без какого-либо внешнего воздействия на систему. (Кварцевый сосуд с кислородом и озоном, ультрафиолет. После облучения концентрация озона падает почти до нуля)
4) Состояние системы должно быть одинаковым при подходе к нему как со стороны исходных веществ, так и со стороны продуктов (Пример: Реакция H2 + J2 = 2HJ "останавливается" при определенных концентрациях HJ, J2, H2, этот состав получается независимо от того состоит система вначале из равных количеств водорода и кислорода или из чистого йодоводорода. Обратный пример: давление паров воды над хб ватой при разных последовательностях намокания и сушки, но одинаковой концентрации этого пара не одинакова))
5) При изменении внешних условия (температуры, давления, концентраций участников) состояние равновесия изменяется. Причем при постепенном изменении условий состояние системы также изменяется постепенно. Это смещение равновесия.
Вывод константы:
2NO2 <=> N2O4
∆rGпрям = ∆fG(N2O4) - 2∆fG(NOO2)
Для обратной реакции значение энергии Гиббса то же, но с противоположным знаком.
По ходу реакции количество N2O4 возрастает, а NO2 убывает - состояния участников реакции нельзя назвать стандартными.
∆rG(N2O4)= ∆fG(N2O4) + RTlnp(N2O4)
∆rG(NO2) = ∆fG(NOO2) + RTlnp(NO2)
∆rGпрям = [∆fG(N2O4) + RTlnp(N2O4)] - 2[∆fG(NOO2) + RTlnp(NO2)] = ∆rGпрям = [∆fG(N2O4) - 2∆fG(NOO2)] + RT[lnp(N2O4) - 2lnp(NO2)]
∆rGпрям = ∆rG + RTln[p(N2O4)/p^2(NO2)]
Если в системе имеется только NO2, а N2O4 полностью отсутствует, то p(N2O4)=0, p(NO2) = Po. В этом случае логарифм отношения парциальных давлений равен -∞, и энергия Гиббса соответственно тоже равна -∞. Реакция самопроизвольна при таком соотношении участников
если в начальный момент времени система содержит только N2O4, то из равенства p(NO2) = 0, следует что логарифм равен +∞. И энергия Гиббса всегда положительна.
Кривая зависимости ∆rG от p(N2O4) при p(N2O4)->0 стремится к - бесконечности, а при p(N2O4)->1 к +беск. При определенном давлении она пересекает линию, соответствующую ∆rG=0. При меньших парциальных давлениях N2O4 ∆rG отрицательна - самопроизвольная реакция, при больших - самопроизвольна обратная реакция. И При p(N2O4) равному тому давлению ни прямая, ни обратная реакция не будут самопроизвольными.
Состояние системы становится равновесным по отношению к некоторому процессу, когда ∆rG (не стандартная!) равна нулю.
∆rG + RTln[p(N2O4)/p^2(NO2)] = 0
∆rG = -RTln[p(N2O4)/p^2(NO2)]
p(N2O4)/p^2(NO2) = e^(-∆rG/RT) = K
13. Для гомогенной реакции (реакции в одной среде - газе или растворе) скорость - изменение количества вещества (n)в единице объема в единицу времени(t). r = +-(1/V)*(∆n/∆t)=+-∆C/∆t
Если концентрация вещества А меняется в процессе реакции линейно, скорость постоянна во времени и равна угловому коэффициенту прямой, однако гораздо чаще концентрации участников реакции изменяются неравномерно, а скорость зависит от времени. В этом случае можно говорить о средней скорости реакции за определнный промежуток времени.
Истинную скорость реакции в момент времени t определяют также по формуле, но за бесконечно мылай промежуток времени.
rист = +-lim(∆t->0)∆C/∆t = +-dC/dt = +-C'(t)
В гетерогенных реакциях взаимодействие реагентов происходит на поверхности раздела фаз. Скорость гетерогенной химической реакции - изменение количества вещества в единицу времени на единице поверхности rгет = +-(1/S)*(dv/dt)
При определении скорости реакции разложения оксида азота (5) в растворе:
2N2O5,р = 2N2O,p + O2,г Легче всего измерять выделивышийся объем кислорода, температуру эксперимента и давление, можно вычислить количество образовавшегося кислорода, которое по уравнению реакции равно половине количества образовавшегося димера двуокиси азота. Следовательно скорость реакции, выраженная через изменение количества кислорода, будет равна половине скорости разложения N2O5 и половине скорости образования N2O4
r = ∆n(O2)/V∆t = -1/2 * ∆n(N2O5)/V∆t
Скорость химической реакции зависит от природы реагирующих веществ и многих других факторов, среди которых важнейшими являются концентрации реагирующих веществ, температура и присутствие в реакционной смеси катализатора
Простые реакции - процессы протекающие, как непосредственное превращение исходных реагентов в продукты реакции, без образования промежуточных веществ. Только для них порядок реакций по каждому из участников совпадает с его стехиометрическим коэффициентом в уравнении реакции.
Сложные реакции включают в себя множество промежуточных стадий
14. Для того чтобы реакция произошла, необходимо столкновение реагирующих частиц, чем выше концентрации веществ, тем чаще происходят столкновения, тем выше скорость химической реакции.
Скорость химической реакции пропорциональная произведению концентраций реагирующих веществ, взятых в степенях, называемых порядками реакции по соответствующим веществам - Основной закон химической кинетики. Закон действующих масс: r = k*ПCi^ai. Порядок определяется экспериментально. Общий порядок реакции - сумма всех показателей степеней при концентрациях реагентов в кинетическом уравнении.
r=k*C(A)^a*C(B)^b*C(C)^y... a,b,y - порядки реакций по А, В, С. Для их определения необходимо изучить зависимость скорости реакции от концентрации каждого из реагентов по отдельности. Для этого ставят несколько опытов с различной концентрацией одного и того же реагента. все остальные берут в большом избытке. Например, чтобы определить порядок реакции а, измеряют скорость в зависимости от концентрации А, а В и С берут в избытке. Тогда r = k'*C(A)^a, где k' = k*C(B)^b*C(C)^y в данной серии опытов является постоянной величиной.
Для порядка реакции необходимо измерить 2 значения скорости при двух разных концентрациях А С1 и С2: а = (lnr2 - lnr1)/(lnC2 - lnC1)
Для повышеня точности желательно использовать результаты большего количеста опытов, что позволит уменьшить влияние погрешности каждого отдельного измерения на результат. в этом случае порядок реакции можно определить графическим методом, поскольку логарифмирование выражения: lnr = lnK' + alnC(A) дает уравнение прямой в координатах lnr - lnC(A), угловой коэффициент а - равен порядку реакции по компоненту А.
В практикуме мы делали опыты на определение порядка реакции разложения тиосерной кислоты (H2S2O3 = H2O + SO2 + S; r = k*C(H2S2O3)^a), определяли порядок реакции по иодид-иону реакции окисления иодида калия пероксидом водорода в кислой среде (H2O2 + 2I- + 2H+ = I2 + 2H2O; r = k*C(H2O2)^a*C(I-)^b*C(H+)^y
15. Скорость подавляющего большинства химических реакций возрастает при повышении температуры (но есть исключения: 2NO + O2 = 2NO2). Причиной этого является увеличение с ростом температуры доли активных молекул, имеющих достаточную энергию для того, чтобы вступить в реакцию.
Уравнение Аррениуса: k = A*e^(-Ea/RT). Eа - энергия активации, А - предэкспоненциальный множитель.
Энергия активации - минимальная избыточная энергия, которую необходимо иметь реагирующим молекулам, чтобы они могли вступить в химическую реакцию. При температуре Т доля молекул, имеющих энергию Еа или более равна e^(-Ea/RT). Поэтому с повышением температуры число активных молекул увеличивается, и возрастает скорость химической реакции
Кроме того, скорость зависит от частоты столкновений молекул реагентов (частотный фактор Я), а также от вероятности благоприятной ориентации молекул в пространстве при их столкновении (стерический фактор Р). Частотный и стерический факторы входят в предэкспоненциальный множитель и не очень сильно зависят от температуры
Правило Вант-Гоффа: при увеличении температуры на 10 градусов скорость реакции возрастает в 2-4 раза. r2 = r1*y^[(T2-T1)/10]
Активными являются молекулы, энергия которых превышает Еа. Чем меньше энергия активации, тем большее число молекул способно вступить при данной температуре в химическую реакцию. Чем больше энергия активации, тем сильнее ее скорость зависит от температуры
Энергетический профиль показывает, как изменяется энергия реагирующих молекула пути их превращения в продукты реакции. При взаимодействии молекул исходных веществ сначала образуется активированный комплекс [A...B], в котором старые связи в молекулах А и В уже отчасти разорваны, а новые еще не образовались. Энергия активированного комплекса больше энергии исходных молекул и продуктов, и на энергетическом профиле он соответствует вершине барьера, отделяющего исходные вещества от продуктов реакции. Образовывать активированный комплекс могут только молекулы, получившие в результате теплового движения дополнительную энергию, большую или равную Еа. активированный комплекс существует непродолжительное время, после чего распадается, образуя частицы продуктов реакции. Активированный комплекс также называют переходным состоянием реакции (НЕ промежуточное вещество)..
экспериментальное определение энергии активации реакции проводят путем исследования зависимости константы скорости реакции от температуры в соответствии с уравнением Аррениуса, приводят его к виду lnk = lnA - Ea/RT, то есть к уравнению прямой в координатах lnk - 1/T, угловой коэффициент которой равен -Ea/R. В практикуме мы определяли ЭА разложения тиосерной кислоты и окисления иодида калия пероксидом водород в кислой среде.
H2S2O3 = H2O + SO2 + S и H2O2 + 2I- + 2H+ = I2 + 2H2O
16. Катализ – это явление ускорения химических реакций под действием малых количеств веществ (катализаторов), которые сами в процессе реакции не расходуются и после ее окончания остаются неизменными. Действие катализатора заключается в том, что он образует промежуточное соединение с реагирующими молекулами, которое потом распадается до продуктов реакции катализатора. Тем самым реакция направляется по более выгодному пути с меньшей энергией активации. Реакция:
А + В = С