part5 (1106114), страница 14
Текст из файла (страница 14)
Условие максимума будет выполняться при 2dsin = k , где k –целое число. Полученная формула носит название формулы Вульфа – Брэггов.
Рассмотренный случай дифракции относится к конкретным межатомным плоскостям и монохроматическому излучению, что заметно упрощает анализ условий образования мак-симумов. В действительности же межатомные плоскости могут быть ориентированы произ- вольным образом, причем в роли интерферирующих лучей могут выступать лучи, отраженные не только от соседних плоскостей. Кроме того, следует иметь ввиду, что реаль-ные кристаллические структуры имют три измерения, каждому из которых могут соответст-вовать различные условия образования максимумов. Тем не менее рентгенографический метод анализа кристаллов нашел широкое применение в петрографии, рентгеноструктур-ном анализе и ряде других приложений.
Лекция 12 Поляризация света. Взаимодествие света с веществом.
§12-1 Явление поляризации.
Обычно считается, чтопонятие поляризации связано с сохранением неизменной ориен-тации плоскости колебаний. Говорить о поляризации имеет смысл только для поперечных колебаний. Свет, как мы знаем, является электромагнитной волной, а эти волны – попереч-ны и поляризованы (см.рис.37) так, что казалось бы, световые колебания всегда должны быть поляризованы. Однако мы знаем, что световые волны испускаются отдельными цуга-ми, продолжительность которых не превышает 10–8 сек. Процесс испускания является слу-
только с одним направлением плоскости колебаний электрического вектора Е, так что на выходе поляризатора свет становится плоско (линейно) поляризованным. Человеческий глаз не в состоянии обнаружить, поляризован свет или неполяризован. Для того, чтобы обнаружить это, необходимо использовать второе такое же приспособление, которое на-зывают анализатором. Если направление пропускания анализатора и поляризатора совпа-дают, луч света на выходе из анализатора имеет максимальную интенсивность. При про-извольном угле между направлениями анализатора и поляризатора (см.рис.53) амплитуда световых колебаний, выходящих из анализатора ЕА = ЕП cos, где ЕП – амплитуда колеба-ний на выходе из поляризатора. В электромагнитной волне плотность энергии (интенсив-ность) пропорциональна квадрату амплитуды колебаний Е, т.е. I П Е и IА Е
. На осно-вании этого получаем:
Это соотношение называется законом Малюса.
§12-2 Закон Брюстера.
Простейшим приспособлением для поляризации света может служить прозрачное диэлектрическое зеркало. Пусть на диэлектрик (см. рис.54) падает луч естественного све-
Рис.54. Поляризация света при отражении и преломлении. | та. Обозначим через n2 коэффициент преломления диэлектрика, а через n1 – коэффициент преломления среды, откуда падает свет ( - угол падения, - угол преломления). Условимся изображать направление колебаний вектора Е в виде точек или тонких чер-точек, где точка изображает направление вектора, перпендику-лярное плоскости чертежа, а черточка означает, что вектор Е ле-жит в плоскости чертежа. В естественном свете равновероятны все направления колебаний Е, что изображается в виде того, что количество точек и черточек одинаково. Опыт показывает, что отраженный и преломленнвй лучи становятся частично поляри-зованными, причем в отраженном свете преобладающими ста-новятся колебания, плоскость которых перпендикулярна плос- |
кости чертежа, а в преломленном предпочтительнее оказываются направления колебаний в плоскости чертежа ( на рис. это изображается в виде преимущества числа точек или черто-чек). Существует угол падения, при котором отраженные лучи становятся полностью поля-ризованными. Этот угол называется углом Брюстера, его значение связано с отношением n2/n1 = n21, т.е. относительным показателем преломления:
Качественное объяснение этого закона следует из рассмотрения микроскопической картины распространения светв в веществе. Рассмотрим упрощенную модель взаимодействия света с веществом, согласно которой переменное электрическое поле световой волны приводит в двихение атомы вещества. Атом же представим как диполь, где роль отрицательного заряда
Рис.55. Индикатрисса излучения диполя. | играет внешний электрон, а вся остальная часть атома рассматривается как положи-тельный заряд (ион). Т.к. масса положитель-ного иона во много раз ( более 2000) больше, чем масса электрона, можно рассматривать лишь колебания электрона. Строгая теория электромагнетиза показывает, что колеблю-щийся диполь становится излучателем элек-тромагнитных волн, причем интенсивность излучения различна в разных направлениях. Для иллюстрации анизотропности излуча- |
тельной способности диполя строится диаграмма (индикатрисса), на которой интенсивность излучения в заданном направлении изображается в виде вектора. Длина этого вектора и ха-рактеризует интенсивность излучения. Пространственное изображение индикатриссы при-ведено на рис.55. В правой части рисунка показано сечение диаграммы вертикальной пло-скостью, проходящей через центр диаграммы.
Положения рассмотренной модели применим для объяснения закона Брюстера. В па-дающем на границу раздела двух сред естественном свете вектор Е принимает всевозмож-ные направления (см.рис.53), но без ограничения общности можно рассматривать лишь два:
| Е и Е , т.к. любой вектор Е можно пред-ставить как их сумму (см. левую часть рис.56). Вектор Е соответствует колебани-ям, которые происходят в направлении, пер-пендикулярным плоскости чертежа,а Е ха-рактеризует колебания в этой плоскости. Представляет интерес рассмотреть лишь со-ставляющую Е .Если диполь излучает волну Е в направлении преломленного луча ( пра- |
в
ая часть рис.56), то из диаграммы направленности следует, что в направлении,перпендику-лярном этому лучу, никакого излучения не происходит. В этом направлении излучаются лишь волны с напряженностью Е . Из этого следует, что если луч преломленный и луч от-раженный перпендикулярны друг другу, то в отраженном свете полностью отсутствуют ко-лебания с Е .Из рисунка видно, что + + 900 = 1800,или + =900, тогда как из закона преломления следует, что sin = n21 sin . Подставляя в закон преломления = 900 - , по-лучим sin = n21sin(900 -) = n21cos, т.е.
tg = n21.
§12-3 Поглощение света.
При прохождении света через вещество часть энергии световой волны поглощается, переходя во внутреннюю энергию вещества. Для оценки величины этих по-терь рассмотрим световой поток, распространяющейся вдоль оси х (рис.57).0пыт показы-вает,что при прохождении очень тонкого слоя вещества толщиной dx относительная убыль
Рис.57. Изменение интенсивнос- ти света при его поглощении. | интенсивности, т.е.отношение изменения интенсив-ности dI в этом слое к интенсивности падающего света I(х) ( см.рис.57),пропорциональна толщине слоя: где коэффициент К, зависящий от свойств вещества, называется коэффициентом поглощения.Знак минус отражает убывание интенсивности с ростом х. Измене-ние интенсивности света при прохождении слоя конеч-ной толщины х находится путем прямого интегри-рования вышеприведенной формулы: |
Потенцируя последнюю формулу, получим известный закон Бугера: .
§ 12 - 4 Рассеяние света.