Синтез, кристаллическая и электронная структура и физические свойства полярных интерметаллидов на основе железа (1105738), страница 20
Текст из файла (страница 20)
Anorg. Allg. Chem., 1998, v. 624, p.244-250.17.Amagai, Y.; Yamamoto, A.; Lida, T.; Takanashi, Y. ThermoelectricProperties of Semiconductor-Like Intermetallic Compounds TMGa3 (TM = Fe, Ru,and Os) // J. Appl. Phys., 2004, v. 96(10), p. 5644-5648.18.Bogdanov, D.; Winzer, K.; Nekrasov, I.A.; Pruschke, T. ElectronicProperties of Semiconductor RuIn3 // J. Phys.: Condens.
Matter, 2007, v. 19,232202.19.Imai, Y.; Watanabe, A. Electronic Structures of Semiconducting FeGa3,RuGa3, OsGa3, and RuIn3 with the CoGa3- or the FeGa3-Type Structure //Intermetallics, 2006, v. 14, p. 722-728.12920.Yin, Z.; Pickett, W. Evidence for a Spin Singlet State in the IntermetallicSemiconductor FeGa3 // Phys.
Rev. B, 2010, v. 82, 155202.21.Arita, M.; Shimada, K.; Utsumi, Y.; Morimoto, O.; Sato, H.; Namatame, H.;Taniguchi, M.; Hadano, Y.; Takabatake, T. Electronic Structure of a Narrow-GapSemiconductor FeGa3 Investigated by Photoemission and Inverse PhotoemissionSpectroscopies // Phys. Rev. B, 2011, v. 83, 245116.22.Osorio-Guillen, J. Pressure-Induced Metal-Insulator Transition andAbsence of Magnetic Order in FeGa3 from a First-Principles Study // Phys. Rev.B, 2012, v. 86, 235202.23.Singh, D. Itinerant Origin of the Ferromagnetic Quantum Critical Point inFe(Ga,Ge)3 // Phys. Rev. B, 2013, v. 88, 064422.24.Tsujii, N.; Yamaoka, H.; Matsunami, M.; Eguchi, R.; Ishida, Y.; Senba, Y.;Ohashi, H.; Shin, S.; Furubayashi, T.; Abe, H.; Kitazawa, H.
Observation ofEnergy Gap in FeGa3 // J. Phys. Soc. Jpn., 2008, v. 77(2), 024705.25.Gippius, A.A.; Verchenko, V.Yu.; Tkachev, A.V.; Gervits, N.E.; Lue, C.S.;Tsirlin, A.A.; Büttgen, N.; Krätschmer, W.; Baenitz, M.; Shatruk, M.; Shevelkov,A.V. Interplay between Localized and Itinerant Magnetism in Co-SubstitutedFeGa3 // Phys. Rev. B, 2014, v. 89, 104426.26.Gamza, M.B.; Tomczak, J.M.; Brown, C.; Puri, A.; Kotliar, G.; Aronson,M.C. Electronic Correlations in FeGa3 and the Effect of Hole Doping on ItsMagnetic Properties // Phys.
Rev. B, 2014, v. 89, 195102.27.Pöttgen, R.; Hoffmann, R.D.; Kotzyba, G. Structure, Chemical Bonding, andProperties of CoIn3, RhIn3, and IrIn3 // Z. Anorg. Allg. Chem., 1998, v. 624, p.244-250.28.Umeo, K.; Hadano, Y.; Narazu, S.; Onimaru, T.; Avila, M.A.; Takabatake,T. Ferromagnetic Instability in a Doped Band Gap Semiconductor FeGa3 // Phys.Rev. B, 2012, v. 86, 144421.29.Singh,D.J.QuantumCriticalBehaviorandPossibleTripletSuperconductivity in Electron-Doped CoO2 Sheets // Phys. Rev. B, 2003, v. 68,020503.13030.Xiang, H.J.; Singh, D.J. Suppression of Thermopower of NaxCoO2 by anExternal Magnetic Field: Boltzmann Transport Combined with Spin-PolarizedDensity Functional Theory // Phys.
Rev. B, 2007, v. 76, 195111.31.Goldsmid, H.J. Introduction to Thermoelectricity // Springer Series inMaterials Science, v. 121. Berlin: Springer-Verlag Berlin Heidelberg, 2010, 242 p.32.Kasinathan, D.; Wagner, M.; Koepernik, K.; Cardoso-Gil, R.; Grin, Y.;Rosner, H. Electronic and Thermoelectric Properties of RuIn3-xAx (A = Sn, Zn) //Phys. Rev.
B, 2012, v. 85, 035207.33.Wagner, M.; Cardoso-Gil, R.; Oeschler, N.; Rosner, H.; Grin, Y. RuIn3-xSnx,RuIn3-xZnx, and Ru1-yIn3 – New Thermoelectrics Based on the Semiconductor RuIn3// J. Mater. Res., 2011, v. 26(15), p. 1886-1893.34.Isaeva, A.A.; Makarevich, O.N.; Kuznetsov, A.N.; Doert, T.; Abakumov,A.M.; Van Tendeloo, G.
Mixed Tellurides Ni3-xGaTe2 (0 ≤ x ≤ 0.65): Crystal andElectronic Structures, Properties, and Nickel Deficiency Effects on VacavcyOrdering // Eur. J. Inorg. Chem., 2010, p. 1395-1404.35.Deiseroth, H.J.; Aleksandrov, K.; Reiner, C.; Kienle, L.; Kremer, R.K.Fe3GeTe2 and Ni3GeTe2 – Two New Layered Transition-Metal Compounds:Crystal Structures, HRTEM Investigations, and Magnetic and ElectricalProperties // Eur.
J. Inorg. Chem., 2006, p. 1561-1567.36.Larsson, A.K.; Noren, L.; Withers, R.L.; Rundlöf, H. Coupled In/Te andNi/Vacancy Ordering and the Modulated Crystal Structure of a B8 Type, Ni3±xIn1yTe2+ySolid Solution Phase // J. Solid State Chem., 2007, v. 180, p. 2723-2733.37.Litvinenko, O.N.; Kuznetsov, A.N.; Olenev, A.V.; Popovkin, B.A. NewMixed Tellurides of Nickel and Group 13-14 Metals Ni3-δMTe2 (M = Sn, In, Ga) //Russ.
Chem. Bull., 2007, v. 56(10), p. 1945-1947.38.Reynolds, T.K.; Kelley, R.F.; DiSalvo, F.J. Electronic Transport andMagnetic Properties of a New Nickel Antimonide Telluride, Ni2SbTe2 // J. AlloysCompd., 2004, v. 366, p. 136-144.13139.Kanematsu, K. Magnetic and X-ray Studies of Iron-Germanium System. I.Partial Diagram of Phase with B82 and Its Variant Type of Structure // J. Phys.Soc. Jpn. 1965, v. 20, p. 36-43.40.Giefers, H.; Nicol, M. High Pressure X-ray Diffraction Study of All Fe-SnIntermetallic Compounds and One Fe-Sn Solid Solution // J.
Alloys Compd., 2006,v. 422, p. 132-144.41.Chen, B.; Yang, J.; Wang, H.; Imai, M.; Ohta, H.; Michioka, C.; Yoshimura,K.; Fang, M. Magnetic Properties of Layered Itinerant Electron FerromagnetFe3GeTe2 // J. Phys. Soc. Jpn., 2013, v. 82, 124711.42.Petříček, V.; Dušek, M.; Palatinus, L. Crystallographic Computing SystemJANA2006: General Features // Z. Kristallogr., 2014, v.
229, p. 345-352.43.Sheldrick, G.M. Crystal Structure Refinement with SHELXL // Acta Cryst.2015, C71, 3-8.44.Gelato, L.M.; Parthé, E. STRUCTURE TIDY – a Computer Program toStandardize Crystal Structure Data // J. Appl. Crystallogr., 1987, v. 20, p. 139143.45.Koepernik, K.; Eschrig, H. Full-Potential Nonorthogonal Local OrbitalMinimum-Basis Band-Structure Scheme // Phys. Rev. B, 1999, v.
59, 1743.46.Perdew, J.P.; Wang, Y. Accurate and Simple Analytic Representation of theElectron-Gas Correlation Energy // Phys. Rev. B, 1992, v. 45, 13244.47.Blöchl, P.E.; Jepsen, O.; Andersen, O.K. Improved Tetrahedron Method forBrillouin-Zone Integrations // Phys. Rev. B, 1994, v. 49, 16223.48.Nordström, L.; Brooks, M.S.S.; Johansson, B. Calculation of OrbitalMagnetism and Magnetocrystalline Anisotropy Energy in YCo5 // J. Phys.:Condens. Matter, 1992, v. 4, p.
3261-3272.49.Matsnev, M.E.; Rusakov, V.S. SpectrRelax: An Application for MössbauerSpectra Modeling and Fitting // AIP Conf. Proc., 2012, v. 1489, p. 178-185.50.Massalski, T.; Okamoto, H.; Subramian, P.; Kacprzak, L. Binary AlloyPhase Diagrams, 2nd ed. // ASM International: Materials Park, OH, 1996.13251.Kuhn, G.; Mankovsky, S.; Ebert, H.; Regus, M.; Bensch, W.
ElectronicStructure and Magnetic Properties of CrSb2 and FeSb2 Investigated via Ab InitioCalculations // Phys. Rev. B, 2013, v. 87, 085113.52.Gippius, A.A.; Baenitz, M.; Okhotnikov, K.S.; Johnsen, S.; Iversen, B.;Shevelkov, A.V. Sb Magnetic Resonance as a Local Probe for the Gap Formationin the Correlated Semimetal FeSb2 // Appl. Magn. Reson., 2014, v. 45, 1237.53.Battiato, M.; Tomczak, J.M.; Zhong, Z.; Held, K.
Unified Picture for theColossal Thermopower Compound FeSb2 // Phys. Rev. Lett., 2015, v. 114, 236603.54.T. Moriya. Spin fluctuations in itinerant electron magnetism // Springer-Verlag, Berlin, 1985.55.N.W. Ashcroft and N.D. Mermin. Solid State Physics // Saunders CollegePublishing, New York, 1976.56.Provenzano, V.; Shapiro, A.J.; Shull, R.D. Reduction of Hysteresis Losses inthe Magnetic Refrigerant Gd5Ge2Si2 by the Addition of Iron // Nature, 2004, v. 429,p. 853-857.57.Tan, X.; Chai, P.; Thompson, C.M.; Shatruk, M.
Magnetocaloric Effect inAlFe2B2: Toward Magnetic Refrigerants from Earth-Abundant Elements // J. Am.Chem. Soc., 2013, v. 135, p. 9553-9557.58.Singh, N.K.; Suresh, K.G.; Nigam, A.K.; Malik, S.K. Heat Capacity andMagnetoresistance in Dy(Co,Si)2 Compounds // J. Appl. Phys., 2005, v. 97,10A301.59.Tegus, O.; Brück, E.; Buschow, K.H.J.; F.R. de Boer. Transition-Metal-Based Magnetic Refrigerants for Room-Temperature Applications // Nature, 2002,v.
415, p. 150-152.60.R.M. Cornell and U. Schwertmann. The Iron Oxides: Structure, Properties,Reactions, Occurrences and Uses, 2nd, Completely Revised and Extended Edition// VCH Press, Weinheim, Germany, 2006.133.