Синтез и химическое модифицирование поверхности анизотропных наночастиц серебра (1105736), страница 21
Текст из файла (страница 21)
Для аквазолей серебра зафиксирован эффект вынужденного низкочастотногокомбинационного рассеяния лазерного излучения. Данные системы могут быть137использованы в качестве основы для эффективного источника накачки с изменяемойчастотой сдвига в гигагерцовой и терагерцовой областях.8.Показано, что усиление оптического сигнала локализованного усиленногокомбинационного рассеяния на настержнях серебра в 20 раз выше, чем на серебряныхнаносферах.1385. Список литературы1. Wiley B., Sun Y., Mayers B., Xia Y.
Shape-controlled synthesis of metal nanostructures: thecase of silver // Chem. Eur. J. 2005. V. 11. № 2. P. 454-463.2. Chen G., Wang Y., Yang M., Xu J., Goh S. J., Pan M., Chen H. Measuring EnsembleAveraged Surface-Enhanced Raman Scattering in the Hotspots of Colloidal Nanoparticle Dimersand Trimers.// J. Am. Chem. Soc., 2010. V.
132. P. 3644–3645.3. Rycenga M., Cobley C. M., Zeng J., Li W., Moran C. H., Zhang Q., Qin D., Xia Y.Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic AP. licationsChem. Rev., 2011. V. 111. № 6. P. 3669–3712.4. Yao J., Wang Y., Tsai K.-T., Liu Z., Yin X., Bartal G., Stacy A. M., Wang Y.-L., Zhang X.Design. fabrication and characterization of indefinite metamaterials of nanowires // Phil. Trans.R. Soc. A. 2011. V. 369. P. 3434–3446.5. Московиц М., Озин Г. Криохимия. Пер с англ. Под ред. Г.Б. Сергеева М.:Мир. 1979.604 c.6.
Moskovits M. Chemistry and Physics of Matrix Isolated Species. Eds Andrews L.,Amsterdam: North Holland. 1989. 430 P.7. Klabunde K. J. Chemistry of Free Atoms and Particles. New York:Academic Press. 1980. 238P.8. Sergeev B.M., Sergeev G.B. Lee Y.J., Prusov A.N., Polyakov V.A. Cryochemical synthesisof bimetallic nanoparticles in the silver–lead– methylacrylate system // Mendeleev Commun.1998. V. 8. № 1. P. 1–2.9. Neddersen. J., Chumanov G., Cotton. T. M.Laser-ablation of metals – a new method forpreparing SERS active colloids // AP. l. Spectrosc., 1993. № 47. P. 1959-1964.10. Ganeev R.A., Baba M., Ryasnyansky A.I., Suzuki M., Kuroda H.
Characterization of opticaland nonlinear optical properties of silver nanoparticles prepared by laser ablation in variousliquids // Opt. Commun., 2004. V. 240. № 4-6. P. 437-448.11. Simakin A. V., Voronov V.V., Kirichenko N.A., Shafeev G.A. Nanoparticles produced bylaser ablation of solids in liquid environment // AP. l.
Phys. A. 2004. V. 79. № 4-6. P. 11271132.12.Nguyen T. B., Do T. L., Nguyen T. H., Le T. Q. Silver nanoparticles prepared by laserablation and their optical characteristics // VNU Journal of Science. Mathematics – Physics2008. V. 24. P. 1-5.13. Mafune F., Kohno J.-Y. Takeda Y., Kondow T., Sawabe H. Formation and size control ofsilver nanoparticles by laser ablation in aqueous solution. // J.
Phys. Chem. B. 2000. V.104. №39. P. 9111-9117.13914.Tsujia Т., Thanga D.-H., Okazakib Y., Nakanishib M., Tsuboic Y. Tsujia M. Preparationof silver nanoparticles by laser ablation in polyvinylpyrrolidone solutions // AP. lied SurfaceScience 2008. V.
254. № 16. P. 5224–5230.15.Новожилов Ю.А., Лунина М.А. Адсорбция жирных кислот и спиртов навысокодисперсном никеле. // Журн. Физ. Хим. 1968. Т.42. С. 2114-2115.16.Bredig. G. Einige anwendungen des elektriscen lichbogens. // Z. Electrochem. 1898. V.4.P. 514-515.17.ЛунинаМ.А.,НовожиловЮ.А.Электрическийконденсационныйспособполучения органодисперсий металлов. // Колл. Журн. 1969. Т.31. С.
467-470.18. Sakamoto M., Fujistuka M., Majima T. Light as a construction tool of metal nanoparticles:Synthesis and mechanism // J. Photochem. Photobiol., C. 2009. V. 10. № 1. P. 33–56.19. Henglein A., Giersig M. Formation of colloidal silver nanoparticles: caP. ing action of citrate// Journal of Physical Chemistry B 1999. V. 103. № 44. P.
9533-9539.20.Yang S., Wang Y., Wang Q., Zhang R., Ding B.UV irradiation induced formation of Aunanoparticles at room temperature: The case of ph values // Colloids Surf., A. 2007. V. 301. №1-3. P. 174–183.21.Turkevich J., Stevenson P. C., Hiller J. A study of the nucleation and growth processes inthe synthesis of colloidal gold. // Discuss. Faraday Soc.
1951. V.11. P. 55-75.22.Lee P. C., Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and goldsols. // J. Phys. Chem. 1982. V.86. P. 3391-3395.23.Schmid G. Large clusters and colloids. Metals in the embryonic state. // Chem. Rev.1992. V.92. P. 1709-1727.24.Jin R., Cao Y.W., Mirkin C.A., Kelly K.L., Schatz G.S., Zheng J.G., Photoinducedconversion of silver nanospheres to nanoprisms. // Science. 2001. V.294. P. 1901-1903.25.Ershov B.G., Janata E., Henglein A. Growth of silver particles in aqueous solution: long-lived “magic” clusters and ionic strength effects. // J. Phys.
Chem. 1993. V.97. P. 339-343.26.Xiong Y., Washio I., Chen J., Sadilek M., Y.Xia M. Trimeric clusters of silver inaqueous AgNO3 solutions and their role as nuclei in forming triangular nanoplates of silver. //Angew. Chem. Int. Ed. 2007. V.46. P. 4917-4921.27.Meisel D. Catalysis of hydrogen production in irradiated aqueous solutions by gold sols.// J. Am. Chem. Soc.
1979 V.101. P. 6133-6135.28.Henglein A., Lilie J. Storage of electrons in aqueous solution: the rates of chemicalcharging and discharging the colloidal silver microelectrode. // J. Am. Chem. Soc. 1981. V.103.P. 1059-1066.14029.Yin Y., Li Z.-Y.Zhong Z., Gates B., Xia Y.,Venkateswaran S. Synthesis andcharacterization of stable aqueous dispersions of silver nanoparticles through the Tollensprocess.
// J. Mater. Chem. 2002. V.12. P. 522-527.30Panigrahi S., Kundu S., Ghosh S.K., Nath S., Pal T. General method of synthesis formetal nanoparticles. // J. Nanopart. Res. 2004. V.6. P. 411-414.31.LaMer V.K., Dinegar R.H. Theory. production and mechanism of formation ofmonodispersed hydrosols. // J. Am. Chem. Soc. 1950. V.72. P. 4847-4854.32.Creighton J.A., Blatchford C.G., Albrecht M.G. Plasma resonance enhancement ofRaman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to theexcitation wavelength. // J.
Chem. Soc. Faraday Trans. 1979. V.75. P. 790-798.33.Look J.-L., Bogush G., Zukoski C. Colloidal interactions during the precipitation ofuniform submicrometre particles. // Faraday Discuss. Chem. Soc. 1990. V.90. P. 345-357.34.Kim S., Zukoski C. A model of growth by hetero-coagulation in seeded colloidaldispersions. // J. Colloid Interface Sci.
1990. V.139. P. 198-212.35.Van Hyning D.L., Zukoski C.F. Formation mechanisms and aggregation behavior ofborohydride reduced silver particles// Langmuir. 1998. V.14. P. 7034-7046.36.Brust M., Walker M., Bethell D., Schiffrin D.J., Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. // J. Chem.
Soc., Chem.Commun. 1994. P. 801-802.37.Sandhyarani N., Resmi M.R., Unnikrishnan R., Vidyasagar K., Ma S., Antony M. P. ,Panneer Selvam G., Visalakshi V., Chandrakumar N., Pandian K., Tao Y.-T., PradeeP. T.Monolayer-protectedclustersuperlattices:structural.spectroscopic.calorimetric.andconductivity studies. // Chem. Mater. 2000. V.12. P. 104-113.38.He S., Yao J., Xie S., Pang S., Gao H. Investigation of passivated silver nanoparticles. //Chem. Phys. Lett.
2001. V.343. P. 28-32.39.Kiely C.J., Fink J., Zheng J.G., Brust M., Bethell D., Shiffrin D.J. Ordered colloidalnanoalloys. // Adv. Mater. 2000. V.12. P. 640-643.40.Lisiecki I., Pileni M.P.CoP. er metallic particles synthesized "in situ" in reversemicelles: influence of various parameters on the size of the particles. // J.
Phys. Chem. 1995.V.99. P. 5077-5082.41.Manna A., Imae T., Iida M., Hisamatsu N. Formation of silver nanoparticles from a N-hexadecylethylenediamine silver nitrate complex. // Langmuir. 2001. V.17. P. 6000-6004.42.Оленин А.Ю., Крутяков Ю.А., Кудринский А.А., Лисичкин Г.В. Формированиеповерхностного слоя наночастиц серебра в водных и водно-органических средах.
// Колл.Жур. 2008. Т.70. С. 78-84.14143.Cason J.P., Khambaswadkar K., Roberts C.B. Supercritical fluid and compressed solventeffects on metallic nanoparticle synthesis in reverse micelles. // Ind. Eng. Chem. Res. 2000.V.39. P. 4749-4755.44.Jin R., Cao Y. Ch., Hao E., Métraux G. S., Schatz G. C., Mirkin C. A. Controllinganisotropic nanoparticle growth through plasmon excitation // Nature 2003. № 425.
P. 487-490.45.Liu J., Kim A. Y., Wang L. Q., Plamer B. J., Chen Y. L., Bruinsma P. , Bunker B. C.Self-assembly in the synthesis of ceramic materials and composites // Adv. Colloid Interface Sci.1996. V. 69. № 1-3. P. 131-180.46.Yener D. O., Sindel J., Randall C. A., Adair J. H. Synthesis of nanosized silver plateletsin octylamine-water bilayer systems // Langmuir 2002. V. 18. № 22. P. 8692-8699.47.Huang L., Wang H., Wang Z., Mitra A., Bozhilov K. N., Yan Y. Nanowire arrayselectrodeposited from liquid crystalline phases // Adv. Mater.
2002. V. 14. № 1. P. 61-64.48.Zhang S.-H., Xie Z.-X., Jiang Z.-Y., Xu X., Xiang J., Huang R.-B., Zheng L.-S.Synthesis of silver nanotubes by electroless deposition in porous anodic aluminium oxidetemplates // Chem. Commun., 2004. № 9. P. 1106-1107.49.Drury A., Chaure S., Kroll M., Nicolosi V., Chaure N., Blau W. J.Fabrication andcharacterization of silver/polyaniline composite nanowires in porous anodic alumina // Chem.Mater. 2007. V. 19. № 17. P.