Малые некодирующие 6S-1 и 6S-2 РНК из Bacillussubtilis - сравнительный анализ свойств и функций (1105586), страница 34
Текст из файла (страница 34)
2008. V. 9. P. 569-575.99.Ji X., Zhou Y., Pandit S., Huang J., Li H., Lin C.Y., Xiao R., Burge C.B., Fu X.D.SR proteins collaborate with 7SK and promoter-associated nascent RNA to releasepaused polymerase. // Cell. 2013. V. 153. P. 855-868.100. Barrandon C., Bonnet F., Nguyen V.T., Labas V., Bensaude O. The transcriptiondependent dissociation of P-TEFb-HEXIM1-7SK RNA relies upon formation ofhnRNP-7SK RNA complexes. // Mol Cell Biol. 2007. V.
27. P. 6996-7006.101. Gatignol A. Transcription of HIV: Tat and cellular chromatin. // Adv Pharmacol. 2007.V. 55. P. 137-159.102. Karn J., Stoltzfus M.C. Transcriptional and Posttranscriptional Regulation of HIV-1 GeneExpression. // Cold Spring Harb Perspect Med. 2012. V. 2. P. a006916.151103. Zhou M., Halanski M.A., Radonovich M.F., Kashanchi F., Peng J., Price D.H., Brady J.N.Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase IIcarboxyl‐terminal domain during human immunodeficiency virus type 1 transcription.
//Mol Cell. Biol. 2000. V. 20. P. 5077-5086.104.Sedore S.C., Byers S.A., Biglione S., Price J.P., Maury W.J., Price D.H. Manipulation ofP-TEFb control machinery by HIV: recruitment of P-TEFb from the large form by Tatand binding of HEXIM1 to TAR. // Nucleic Acids Res. 2007. V. 35. P. 4347-4358.105. Krueger B.J., Varzavand K., Cooper J.J., Price D.H. The mechanism of release of P-TEFband HEXIM1 from the 7SK snRNP by viral and cellular activators includes aconformational change in 7SK. // PLoS One. 2010.
V. 5. P. e12335.106. Ott M., Geyer M., Zhou Q. The control of HIV transcription: keeping RNA polymerase IIon track. // Cell Host Microbe. 2011. V. 10. P. 426–435.107. Lanz R.B., McKenna N.J., Onate S.A., Albrecht U., Wong J., Tsai S.Y., Tsai M.J.,O'Malley B.W. A steroid receptor coactivator, SRA, functions as an RNA and is present inan SRC-1 complex. // Cell. 1999.
V. 97. P. 17-27.108. Caretti G., Lei E.P., Sartorelli V. The DEAD-box p68/p72 proteins and the noncodingRNA steroid receptor activator SRA: eclectic regulators of disparate biological functions.// Cell Cycle. 2007. V. 6. P. 1172-1176.109. Kugel J.F., Goodrich J.A. Non-coding RNAs: key regulators of mammalian transcription.// Trends Biochem Sci. 2012. V. 37.
P. 144-151.110. Kurisu T., Tanaka T., Ishii J., Matsumura K., Sugimura K., Nakatani T., Kawashima H.Expression and function of human steroid receptor RNA activator in prostate cancer cells:role of endogenous hSRA protein in androgen receptor-mediated transcription. // ProstateCancer Prostatic Dis. 2006. V. 9. P. 173-178.111. Colley S.M., Leedman P.J. Steroid receptor RNA activator - a nuclear receptorcoregulator with multiple partners: insights and challenges.
// Biochimie. 2011. V. 93.P. 1966-1972.112. Caretti G., Schiltz R.L., Dilworth F.J., Di Padova M., Zhao P., Ogryzko V.,Fuller-Pace F.V., Hoffman E.P., Tapscott S.J., Sartorelli V. The RNA helicases p68/p72and the noncoding RNA SRA are coregulators of MyoD and skeletal muscledifferentiation. // Dev Cell.
2006. V. 11. P. 547-560.113. Leygue E. Steroid receptor RNA activator (SRA1): unusual bifaceted gene products withsuspected relevance to breast cancer. // Nucl Recept Signal. 2007. V. 5. P. e006.114. Lanz R.B., Razani B., Goldberg A.D., O’Malley B.W. Distinct RNA motifs are importantfor coactivation of steroid hormone receptors by steroid receptor RNA activator (SRA).
//Proc Natl Acad Sci USA. 2002. V. 99. P. 16081-16086.115. Zhao X., Patton J.R., Ghosh S.K., Fischel-Ghodsian N., Shen L., Spanjaard R.A. Pus3pand Pus1p-dependent pseudouridylation of steroid receptor RNA activator controls afunctional switch that regulates nuclear receptor signaling. // Mol Endocrinol. 2007. V. 21.P.
686-699.116. Ulveling D., Francastel C., Hubé F. When one is better than two: RNA with dualfunctions. // Biochimie. 2011. V. 93. P. 633-644.117. Krummel D.A., Nagai K., Oubridge C. Structure of spliceosomal ribonucleoproteins. //F1000 Biol Rep. 2010. V. 2. P. 39.118. Lacadie S.A., Rosbash M. Cotranscriptional spliceosome assembly dynamics and the role152of U1 snRNA:5'ss base pairing in yeast. // Mol Cell. 2005. V. 19. P. 65-75.119.
Dhanasekaran K., Kumari S., Kanduri C. Noncoding RNAs in chromatin organization andtranscription regulation: an epigenetic view // Subcell Biochem. 2013. V. 61. P.343-372.120. Kwek K.Y., Murphy S., Furger A., Thomas B., O’Gorman W., Kimura H.,Proudfoot N.J., Akoulitchev A. U1 snRNA associates with TFIIH and regulatestranscriptional initiation. // Nat Struct Biol. 2002. V. 9.
P. 800-805.121. Blume S.W., Meng Z., Shrestha K., Snyder R.C., Emanuel P.D. The 5′-untranslated RNAof the human dhfr minor transcript alters transcription pre-initiation complex assembly atthe major (core) promoter. // J Cell Biochem. 2003. V. 88. P. 165-180.122.
Martianov I., Ramadass A., Serra Barros A., Chow N., Akoulitchev A. Repression of thehuman dihydrofolate reductase gene by a non-coding interfering transcript. // Nature.2007. V. 445. P. 666-670.123. Schneider C., King R.M., Philipson L. Genes specifically expressed at growth arrest ofmammalian cells. // Cell. 1988. V. 54. P. 787-793.124.Tani H., Torimura M., Akimitsu N. The RNA degradation pathway regulates the functionof GAS5 a non-coding RNA in mammalian cells. // PLoS ONE. V. 8. P. e55684.125.
Huarte M., Rinn J.L. Large non-coding RNAs: missing links in cancer? // Hum MolGenet. 2010. V. 19. P. R152-R161.126. Kino T., Hurt D.E., Ichijo T., Nader N., Chrousos G.P. Noncoding RNA gas5 is a growtharrest- and starvation-associated repressor of the glucocorticoid receptor. // Sci Signal.2010. V. 3. P.
ra8.127. Smith C.M., Steitz J.A. Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA)host gene and a member of the 5′-terminal oligopyrimidine gene family reveals commonfeatures of snoRNA host genes. // Mol Cell Biol. 1998. V. 18. P. 6897-6909.128. Kugel J.F., Goodrich J.A. Non-coding RNAs: key regulators of mammalian transcription.// Trends Biochem Sci. 2012. V.;37. P. 144-151.129.
Weston B.F., Kuzmine I., Martin C.T. Positioning of the start site in the initiation oftranscription by bacteriophage T7 RNA polymerase. // J Mol Biol. 1997. V. 272. P. 21-30.130. Yura T., Ishihama A. Genetics of bacterial RNA polymerases.
// Annu Rev Genet. 1979.V. 13. P. 59-97.131. Yang X., Lewis P.J., Overproduction and purification of recombinant Bacillus subtilisRNA polymerase. // Protein Expr Purif. 2008. V. 59. P. 86-93.132. Anthony L.C., Artsimovitch I., Svetlov V., Landick R., Burgess R.R. Rapid purificationof His(6)-tagged Bacillus subtilis core RNA polymerase.
// Protein Expr Purif. 2000.V. 19. P. 350-354.133. Mathew R., Chatterji D. The evolving story of the omega subunit of bacterial RNApolymerase. // Trends Microbiol. 2006. V.14. P. 450-455.134. Doherty G.P., Fogg M.J., Wilkinson A.J., Lewis P.J. Small subunits of RNA polymerase:localization, levels and implications for core enzyme composition. // Microbiology. 2010.V. 156. P. 3532-3543.135. Burton Z., Burgess R.R., Lin J., Moore D., Holder S., Gross C.A.
The nucleotidesequence of the cloned rpoD gene for the RNA polymerase sigma subunit from E. coliK12. // Nucleic Acids Res. 1981. V 9. P. 2889-2903.153136. Qi Y., Hulett F.M. PhoP-P and RNA polymerase sigmaA holoenzyme are sufficient fortranscription of Pho regulon promoters in Bacillus subtilis: PhoP-P activator sites withinthe coding region stimulate transcription in vitro. // Mol Microbiol.
1998. V. 28. P. 11871197.137. Helmann J.D. Purification of Bacillus subtilis RNA polymerase and associated factors. //Methods Enzymol. 2003. V. 370. P. 10-24.138. Варфоломеев С.Д., Гуревич К.Г. Биокинетика. // М.: Фаир-пресс. 1998. 720 с.139. Jarmer H., Larsen T.S., Krogh A., Saxild H.H., Brunak S., Knudsen S. Sigma Arecognition sites in the Bacillus subtilis genome. // Microbiology. 2001.
V. 147. P. 24172424.140. Krásný L., Tiserová H., Jonák J., Rejman D., Sanderová H. The identity of thetranscription +1 position is crucial for changes in gene expression in response to aminoacid starvation in Bacillus subtilis. // Mol Microbiol. 2008. V. 69. P. 42-54.141. Reich C., Gardiner K.J., Olsen G.J., Pace B., Marsh T.L., Pace N.R. The RNA componentof the Bacillus subtilis RNase P. Sequence, activity, and partial secondary structure.