Диссертация (1105361), страница 23
Текст из файла (страница 23)
021134.104. Villain J. et al. Terrace sizes in molecular beam epitaxy / J. Villain, A. Pimpinelli, L. Tang,D. Wolf // Journal de physique I. — 1992. — Vol. 2. — P. 2107.105. Liu S. et al. Effect of small-cluster mobility and dissociation on the island density in epitaxialgrowth / S. Liu, L. Bönig, H.
Metiu // Physical Review B. — 1995. — Vol. 52. — P. 2907.106. Kuipers L. et al. Influence of island mobility on island size distributions in surface growth /L. Kuipers, R.E. Palmer // Physical Review B. — 1996. — Vol. 53. — P. R7646.107. Furman I. et al. Effects of mobility of small islands on growth in molecular-beam epitaxy /I.
Furman, O. Biham // Physical Review B. — 1997. — Vol. 55. — P. 7917.108. Van Siclen C.D.W. Single jump mechanisms for large cluster diffusion on metal surfaces /C.D.W. Van Siclen // Physical Review Letters. — 1995. — Vol. 75. — P. 1574.109. Khare S.V. et al. Diffusion of monolayer adatom and vacancy clusters: Langevin analysis andMonte Carlo simulations of their Brownian motion / S.V.
Khare, N.C. Bartelt, T.L. Einstein // Physical Review Letters. — 1995. — Vol. 75. — P. 2148.110. Sholl D.S. et al. Diffusion of clusters of atoms and vacancies on surfaces and the dynamicsof diffusion-driven coarsening / D.S. Sholl, R.T. Skodje // Physical Review Letters.
— 1995.— Vol. 75. — P. 3158.111. Kryukov Y.A. et al. Effects of cluster diffusion on the island density and size distribution insubmonolayer island growth / Y.A. Kryukov, J.G. Amar // Physical Review E. — 2011. —Vol. 83. — P. 041611.112. Hamilton J. Magic Size Effects for Heteroepitaxial Island Diffusion / J. Hamilton // PhysicalReview Letters. — 1996. — Vol. 77. — P. 885.113. Wu H.H. et al.
Island shape controls magic-size effect for heteroepitaxial diffusion / H.H. Wu,A.W. Signor, D.R. Trinkle // Journal of Applied Physics. — 2010. — Vol. 108. — P. 023521.114. Deltour P. et al. Fast Diffusion of a Lennard-Jones Cluster on a Crystalline Surface / P. Deltour, J.-L. Barrat, P. Jensen // Physical Review Letters. — 1997. — Vol. 78. — Pp. 4597–4600.125115. Liu S.
et al. The effect of island coalescence on island density during epitaxial growth /S. Liu, L. Bönig, H. Metiu // Surface Science. — 1997. — Vol. 392. — P. L56.116. Popescu M.N. et al. Rate-equation approach to island size distributions and capture numbersin submonolayer irreversible growth / M.N. Popescu, J.G. Amar, F.
Family // PhysicalReview B. — 2001. — Vol. 64. — P. 205404.117. Krapivsky P.L. Growth of a single drop formed by diffusion and adsorption of monomers ona two-dimensional substrate / P.L. Krapivsky // Physical Review E. — 1993. — Vol. 47. —P. 1199.118. Davies B. Integral Transforms and Their Applications / B. Davies. — New York: SpringerVerlag, 2002.119. Carslaw H. S. et al. Conduction of Heat in Solids / H.
S. Carslaw, J. C. Jaeger. — Oxford:Clarendon Press, 1959.120. Phillips W.R.C. et al. On approximations to a class of Jaeger integrals / W.R.C. Phillips,P.J. Mahon // Proceedings of the Royal Society of London A. — 2011. — Vol. 467. — P. 3570.121. Борман В.Д. и др.
Формирование ансамбля нанокластеров при быстром осажденииатомов на поверхность / В.Д. Борман, А.В. Зенкевич, В.Н. Неволин и др. // ЖЭТФ.— 2006. — Т. 130. — С. 984.122. Amar J.G. et al. Dynamic scaling of the island-size distribution and percolation in a modelof submonolayer molecular-beam epitaxy / J.G. Amar, F. Family, P.-M. Lam // PhysicalReview B. — 1994. — Vol. 50. — P. 8781.123. Stratonovich R.L.
Topics in the Theory of Random Noise / R.L. Stratonovich. — New York:Gordon and Breach, 1967.124. Van Kampen N.G. Stochastic Processes in Physics and Chemistry / N.G. Van Kampen. —Amsterdam: Elsevier, 1992.125. Карташов Э.М. Аналитические методы в теории теплопроводности твердых тел /Э.М. Карташов. — Москва: Высшая школа, 2001.126. Friedman A.
Partial differential equations of parabolic type / A. Friedman. — CourierCorporation, 2013.126127. Matsumoto M. et al. Mersenne twister: a 623-dimensionally equidistributed uniform pseudorandom number generator / M. Matsumoto, T. Nishimura // ACM Transactions on Modelingand Computer Simulation (TOMACS). — 1998. — Vol. 8. — P.
3.128. Amar J.G. et al. Critical Cluster Size: Island Morphology and Size Distribution in Submonolayer Epitaxial Growth / J.G. Amar, F. Family // Physical Review Letters. — 1995. —Vol. 74. — P. 2066.129. Dean P. The constrained quantum mechanical harmonic oscillator / P. Dean // Proceedingsof the Cambridge Philosophical Society. — 1966.
— Vol. 62. — P. 277.130. Kargovsky A.V. Mean density of level crossings whose duration exceeds a certain value for alow-friction nonlinear oscillator / A.V. Kargovsky // Physical Review E. — 2012. — Vol. 86.— P. 061114.131. Ancarani L.U. et al.
Derivatives of any order of the confluent hypergeometric functionF11(a,b,z) with respect to the parameter a or b / L.U. Ancarani, G. Gasaneo // Journal ofMathematical Physics. — 2008. — Vol. 49. — Pp. –.132. Abramowitz M. et al. Handbook of Mathematical Functions: With Formulas, Graphs, andMathematical Tables / M. Abramowitz, I.A.
Stegun. — New York: Dover Publications, 1964.133. Brychkov Y.A. Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas / Y.A. Brychkov. — Boca Raton: CRC Press, 2008.134. Ciuchi S. et al. Nonlinear relaxation in the presence of an absorbing barrier / S. Ciuchi,F. De Pasquale, B. Spagnolo // Physical Review E. — 1993. — Vol.
47. — P. 3915.135. Lax M. Classical Noise IV: Langevin Methods / M. Lax // Reviews of Modern Physics. —1966. — Vol. 38. — P. 541.136. Jacob E. A Langevin process reflected at a partially elastic boundary: I / E. Jacob //Stochastic Processes and their Applications. — 2012. — Vol. 122.
— P. 191.137. Müller J.W. Some formulae for a dead-time-distorted poisson process: To André Allisy onthe completion of his first half century / J.W. Müller // Nuclear Instruments and Methods.— 1974. — Vol. 117. — P. 401.138. Kloeden P.E. et al. Numerical solution of SDE through computer experiments / P.E. Kloeden,E. Platen, H. Schurz. — Springer Science & Business Media, 2012.127139. Wright E.M. The asymptotic expansion of the generalized hypergeometric function /E.M. Wright // Journal of the London Mathematical Society. — 1935. — Vol.
1. — P. 286.140. Paris R.B. Exponentially small expansions in the asymptotics of the Wright function /R.B. Paris // Journal of Computational and Applied Mathematics. — 2010. — Vol. 234. —P. 488..