Формальный метод сдвига аргумента и геометрия интегрируемых геодезических потоков (1105116), страница 13
Текст из файла (страница 13)
àíàëèçó, Âûï. 26,Ì.:ÌÃÓ, 2005, 87-109.[8] Áîëñèíîâ À. Â., Òàéìàíîâ È. À., Î ïðèìåðå èíòåãðèðóåìîãîãåîäåçè÷åñêîãî ïîòîêà ñ ïîëîæèòåëüíîé òîïîëîãè÷åñêîé ýíòðîïèåé, ÓÌÍ, 1999, 54:4(328), 157158.[9] Áîëñèíîâ À. Â., Òàéìàíîâ È. À., Èíòåãðèðóåìû ãåîäåçè÷åñêèåïîòîêè íà íàäñòðîéêàõ àâòîìîðôèçìîâ òîðîâ, Òðóäû ÌÈÐÀÍ. 2000. T. 231. Ñ. 46-63.78[10] Áîðåâè÷ Ç. È., Øàôàðåâè÷ È. Ð., Òåîðèÿ ÷èñåë, Ì.: Íàóêà, Ãë.ðåä. ôèç-ìàò ëèò., 1985.[11] Âèíáåðã Ý. Á., Îíèùèê À.
Ë., Ñåìèíàð ïî ãðóïïàì Ëè è àëãåáðàè÷åñêèì ãðóïïàì, Ì., Íàóêà, 1988.[12] Âèíáåðã Ý. Á., Ïîïîâ Â. Ë., Òåîðèÿ èíâàðèàíòîâ, Èòîãè íàóêèè òåõí., ÂÈÍÈÒÈ. Ñîâðåì. ïðîáë. ìàòåì. Ôóíäàì. íàïðàâ.,1989, 55, 137-309.[13] Ãàíòìàõåð Ô. Ð., Òåîðèÿ ìàòðèö, Ì.: Íàóêà, 1966.[14] Ãåëüôàíä È. Ì., Çàõàðåâè÷ È. Ñ., Ñïåêòðàëüíàÿ òåîðèÿ ïó÷êà êîñîñèììåòðè÷åñêèõ äèôôåðåíöèàëüíûõ îïåðàòîðîâ 3-ãîïîðÿäêà íà S 1 , Ôóíêö.
àíàëèç è åãî ïðèë., 1989, 23:2, 111.[15] Ãîòî Ì., Ãðîññõàíñ Ô., Ïîëóïðîñòûå àëãåáðû Ëè, Ì., Ìèð,1981.[16] Äóáðîâèí Á. À., Íîâèêîâ Ñ. Ï., Ôîìåíêî À. Ò., Ñîâðåìåííàÿãåîìåòðèÿ. Ãåîìåòðèÿ è òîïîëîãèÿ ìíîãîîáðàçèé, Ì.: Ýäèòîðèàë ÓÐÑÑ, 1998.[17] Æåëîáåíêî Ä. Ï., Êîìïàêòíûå ãðóïïû Ëè è èõ ïðåäñòàâëåíèÿ, Ìèð, 1978.[18] Çóåâ Ê. Ì., Ñïåêòð îïåðàòîðà ÁåëüòðàìèËàïëàñà íà íàäñòðîéêàõ àâòîìîðôèçìîâ òîðîâ, Ìàòåì. ñá., 2006, 197:9,4354.[19] Êèðèëëîâ À. À., Ëåêöèè ïî ìåòîäó îðáèò, Íîâîñèáèðñ, Íàó÷.êíèãà, 2002.[20] Êîëìîãîðîâ À. Í., Ôîìèí Ñ.
Â., Ýëåìåíòû òåîðèè ôóíêöèéè ôóíêöèîíàëüíîãî àíàëèçà, Ì.: Íàóêà, Ãë. ðåä. ôèç-ìàò ëèò.,1976.[21] Êîðîòêåâè÷ À., Ïîëíûå êîììóòàòèâíûå íàáîðû ïîëèíîìîâíà àëãåáðàõ Ëè ìàëîé ðàçìåðíîñòè.[22] Ìàíàêîâ Ñ. Â., Çàìå÷àíèå îá èíòåãðèðîâàíèè óðàâíåíèé Ýéëåðà äèíàìèêè n-ìåðíîãî òâåðäîãî òåëà, Ôóíêö.
àíàëèç è åãîïðèë., 1976, 10:4, 939479[23] Ìèùåíêî À. Ñ., Ôîìåíêî À. Ò., Óðàâíåíèÿ Ýéëåðà íà êîíå÷íîìåðíûõ ãðóïïàõ Ëè, Èçâ. ÀÍ ÑÑÑÐ. Ñåð. Ìàòåì., ò.42, 2,1978, 396-415.[24] Ìèùåíêî À. Ñ., Ôîìåíêî À. Ò., Èíòåãðèðîâàíèå ãàìèëüòîíîâûõ ñèñòåì ñ íåêîììóòàòèâíûìè ñèììåòðèÿìè, Òðóäûñåìèíàðà ïî âåêò. è òåíç. àíàëèçó, âûï.20, Ì.:ÌÃÓ, 1981, 5-54.[25] Ðèä Ì., Ñàéìîí Á., Ìåòîäû ñîâðåìåííîé ìàòåìàòè÷åñêîéôèçèêè. Àíàëèç îïåðàòîðîâ, Ì.: Ìèð, 1982.[26] Ñàäýòîâ Ñ.
Ò., Äîêàçàòåëüñòâî ãèïîòåçû Ìèùåíêî-Ôîìåíêî,Äîêëàäû ÐÀÍ, 2004, 397 6, 751-754.[27] Ñòåðíáåðã Ñ., Ëåêöèè ïî äèôôåðåíöèàëüíîé ãåîìåòðèè, Ì.:Ìèð, 1970.[28] Òàéìàíîâ È. À., Òîïîëîãè÷åñêèå ïðåïÿòñòâèÿ ê èíòåãðèðóåìîñòè ãåîäåçè÷åñêèõ ïîòîêîâ íà íåîäíîñâÿçíûõ ìíîãîîáðàçèÿõ, Èçâ. ÀÍ ÑÑÑÐ. Ñåð. ìàòåì., 1987, 51:2, 429435.[29] Òàéìàíîâ È. À., Î òîïîãè÷åñêèõ ñâîéñòâàõ èíòåãðèðóåìûõãåîäåçè÷åñêèõ ïîòîêîâ, Ìàòåì.
çàìåòêè, 1988, 44:2, 283284.[30] Òðîôèìîâ Â. Â., Ôîìåíêî À. Ò., Àëãåáðà è ãåîìåòðèÿ èíòåãðèðóåìûõ ãàìèëüòîíîâûõ äèôôåðåíöèàëüíûõ óðàâíåíèé,Ì.:Ôàêòîðèàë, 1995.[31] Øàôàðåâè÷ È. Ð., Îñíîâû àëãåáðàè÷åñêîé ãåîìåòðèè, ò.1. Ì.,Íàóêà, 1988.[32] Abellanas L., Alonso L. M., A general setting for Casimirinvariants, J. Math. Phys., Vol. 16, No. 8, 1975, 1580-1584.[33] Bolsinov A. V., Complete commutative subalgebras in polynomialPoisson algebras: a proof of the MischenkoFomenko conjecture,2008, revised and extended version of [7][34] Bolsinov A. V., Dullin H. R., Veselov A.
P., Spectra of Solmanifolds: arithmetic and quantum monodromy, Comm. Math.Phys., 2006, V.264, pp.583- 611.80[35] Buser P., Geometry and spectra of compact Riemann surfaces,Boston; Basel; Berlin: Birkhauser, 1992. (Progress in Mathematics;106).[36] Butler L., A new class of homogeneous manifolds with Liouvilleintegrable geodesic ows. C.R. Math. Acad. Sci. Soc. R.
Can.21(4):127131, 1999.[37] Dixmier J., Sur les representations unitaires des groupes de Lienilpotents, II, Bull. Soc. Math. France 85 (1957), 325-388; Russiantranslation in Matematika, 5 (1961), 1.[38] Frobenius G., Uberdas Pfasche probleme, J. fur Reine undAgnew. Math., 82, 1877, 230-315.[39] Gelfand I. M., Zakharevich I., Webs, Lenard schemes, andthe local geometry of bihamiltonian Toda and Lax structures,math.DG/9903080 v3 27 Mar 2000.[40] Kac M., Can one hear the shape of a drum? Amer. Math.
Monthly.1966. V. 73. P. 123.[41] Morozov V.V., Izv. Vysshikh. Uchebn. Zavedenii Mat., 4(5) 161,1958.[42] Mubarakzyanov G.M., Izv. Vysshikh. Uchebn. Zavedenii Mat.,1(33) 114, 1963.[43] Mubarakzyanov G.M., Izv. Vysshikh. Uchebn. Zavedenii Mat.,3(34) 99, 1963.[44] Mubarakzyanov G.M., Izv.
Vysshikh. Uchebn. Zavedenii Mat.,4(35) 104, 1963.[45] Panyushev D. I., Yakimova O. S., The argument shift methodand maximal commutative subalgebras of Poisson algebras,arXive:math.RT/0702583v1.[46] Patera J., Sharp R.T., Winternitz P., Zassenhaus H., Invariants ofreal low dimension Lie algebras. Journal of Mathematical Physics,Vol. 17, N6., June 1976.81[47] Paternain G.
P., On the topology of manifolds with completelyintegrable geodesic ows, Ergod. Theory Dynam. Syst. 12 (1992),109121.[48] Paternain G. P., On the topology of manifolds with completelyintegrable geodesic ows II, J. Geom. Phys. 13 (1994), 289 298.[49] Praught J., Smirnov R. G., Andrew Lenard: A MysteryUnraveled, Symmetry, Integrability and Geometry: Methods andApplications, Vol. 1 (2005).[50] Rosenlicht M., Some basic theorems on algebraic groups, Amer. J.Math., 1956, 78, 401-443.[51] Thompson R.
C., Pencils of complex and real symmetric and skewmatrices, Linear algebra and its applications, 147:323-371(1991).[52] Turnbull H. W., Aitken A. C., An introduction to the theory ofcanonical matrices, Dover Publications Inc., New York, 1961.82.