Диссертация (1105090), страница 12
Текст из файла (страница 12)
Исследованы флуоресцентные показатели листьев тритикале и льнадолгунца после обработки регуляторами роста эпином, цирконом иЭкоФусом. Установлено увеличение значений ω = F742/F686 после обработкисемян тритикале эпином и цирконом и увеличение показателя (FM−FT)/FTпосле обработки проростков льна-долгунца цирконом и экофусом. Этиизменения сопровождались увеличением физиологических показателей,включая показатели урожайности. Полученные данные свидетельствуют остимулирующем действии исследованных препаратов на фотосинтетическийаппарат растений.84СПИСОК ЛИТЕРАТУРЫ1. Хелдт Г.-В.
Биохимия растений. М.: Бином. Лаборатория знаний, 2011. 472 c.2. Алехина Н.Д., Балнокин Ю.В., Гавриленко В.Ф., Жигалова Т.В.,Мейчик Н.Р., Носов А.М., Полесская А.Г., Харитонашвили Е.В., Чуб В.В.Физиология растений / Под ред. Ермакова И.П. М.: Издательский центр“Академия”, 2007. 640 с.3. Barros T., Kühlbrandt W. Crystallisation, structure and function of plant lightharvesting Complex II // Biochim. Biophys.
Acta. 2009. V. 1787. P. 753–772.4. Ben-Shem A., Frolow F., Nelson N. Crystal structure of plant photosystem I //Nature. 2003. V. 426. P. 630635.5. Young A.J., Frank H.A. Energy transfer reactions involving carotenoids:quenching of chlorophyll fluorescence // J. Photochem. Photobiol.
B: Biology.1996. V. 36. P. 315.6. Rögner M., Boekema E.J., Barber J. How does photosystem 2 split water? Thestructural basis of efficient energy conversion // TIBS. 1996. V. 21. P.4449.7. Miyake C. Alternative electron flows (water–water cycle and cyclic electronflow around PSI) in photosynthesis: molecular mechanisms and physiologicalfunctions // Plant Cell Physiol. 2010. V. 51. N. 12.
P. 1951–1963.8. Buschmann C. Variability and application of the chlorophyll fluorescenceemission ratio red/far-red of leaves // Photosynth. Res. 2007. V. 92. P.261-271.9. Асланиди К.Б., Шалапенок А.А., Карнаухов В.Н., Берестовская Н.Г.,Шавкин В.И.
Метод определения функционального состояния растенийпо спектрам флуоресценции хлорофилла (техника биомониторинга). Пущино: НЦБИ АН СССР, 1988.8510. Siefermann-Hanns D. Fluorescence properties of isolated chlorophyll proteincomplexes // Application of Chlorophyll Fluorescence / Ed. by Lichtenthaler,H. K. Dordrecht: Kluwer. Acad.
Publ., 1988. P. 4554.11. Holzwarth A.R. The functional organization of the antenna systems in higherplants and green algae as studied by time-resolved fluorescence techniques //Current Research in Photosynthesis / Ed. by Baltscheffsky, M. Dordrecht:Kluwer Acad. Publ., 1990. V. 2. P.
223230.12. Pfündel E.E., Strasser R.I. Chlorophyll a fluorescence (77 K) and zeaxanthinformation in leaf discs (Nicotiana tabacum) and isolated thylakoids (Lactucasativa) // Current Research in Photosynthesis / Ed. by Baltscheffsky, M.Dordrecht: Kluwer Acad. Publ., 1990. V. 2. P. 503506.13. Pfündel E.E., Klughammer C., Meister A., Cerovic Z. G. Derivingfluorometer-specific values of relative PSI fluorescence intensity fromquenching of F0 fluorescence in leaves of Arabidopsis thaliana and Zea mays //Photosynth.
Res. 2013. V. 114. P. 189–206.14. Chlorophyll fluorescence: a signature of photosynthesis // Papageorgiou G.C.,Govindjee (eds) / Springer, 2004.15. Murata N., Nishimura M., Takamiya A. Fluorescence of chlorophyll inphotosynthetic systems. 3. Emission and action spectra of fluorescence – threeemission bands of chlorophyll a and the energy transfer between two pigmentsystems // Biochim. Biophys.
Acta. 1966. V. 126. P. 234–243.16. Strasser R.J., Butler W.L. Fluorescence emission spectra of photosystem I,photosystem II and the light-harvesting chlorophyll a/b complex of higherplants // Biochim. Biophys. Acta. 1977. V. 462. P. 307–313.17. Gitelson A.A., Buschmann C., Lichtenthaler H.K. Leaf chlorophyllfluorescence corrected for re-absorption by means of absorption andreflectance measurements // J.
Plant. Physiol. 1998. V. 152. 2-3. P.283296.8618. Balota M., Sowinska M., Buschmann C., Lichtenthaler H. K., Heisel F.,BabaniF. Fluorescence techniques as suitable methods to discriminate wheatgenotypes under drought and high temperature condition // Part of the SPIEConference on Laser Radar TechnoIoy and Applications IV. 1999.
V.3707.19. D'Ambrosio N., Szabo K., Lichtenthaler H.K. Increase of the chlorophyllfluorescence ratio F690/F735 during the autumnal chlorophyll breakdown //Radiat. Environ. Biophys. 1992. V. 31. P. 51–62.20. Lichtenthaler H.K. Laser-induced chlorophyll fluorescence in living plants //Proceedings of the International Geoscience and Remote Sensing Symposium(IGARSS). 1985. V. 3. P. 15711579.21.
Lichtenthaler H.K. Chlorophyll fluorescence signatures of leaves during theautumnal chlorophyll breakdown // J. Plant. Physiol. 1987. V. 131. P. 101-110.22. Buschmann C., Lichtenthaler H.K. Principles and characteristics of multicolour fluorescence imaging of plants // J. Plant. Physiol. 1998. V.
152. P. 297-314.23. Cabrita M.T., Gameiro C., Utkin A.B., Duarte B., Caçador I., Cartaxana P.Photosynthetic pigment laser-induced fluorescence indicators for the detectionof changes associated with trace element stress in the diatom model speciesPhaeodactylum tricornutum // Environ. Monit. Assess. 2016.
V. 188. P.285.24. Wieneke S., Ahrends H., Dammc A., Pinto F., Stadler A., Rossini M., RascherU. Airborne based spectroscopy of red and far-red sun-induced chlorophyllfluorescence: Implications for improved estimates of gross primaryproductivity // Remote Sensing of Environment.
2016. V. 184. P. 654–667.8725. Navratil M., Buschmann C. Measurements of reflectance and fluorescencespectra for nondestructive characterizing ripeness of grapevine berries //Photosynthetica. 2016. V. 54. N 1. P. 101109.26. Maxwell K., Johnson G.N. Chlorophyll fluorescence – a practical guide // J.Exp. Botany. 2000. V. 51. P. 659668.27. Li Z., Wakao S., Fischer B.B., Niyogi K.K. Sensing and responding to excesslight // Annu. Rev. Plant Biol.
2009. V. 60. P. 239260.28. Ptushenko V.V., Ptushenko E.A., Samoilova O.P., Tikhonov A.N. Chlorophyllfluorescence in the leaves of Tradescantia species of different ecologicalgroups: Induction events at different intensities of actinic light // BioSystems. 2013. V. 114.
P. 8597.29. Li X.-P., Gilmore A.M., Caffarri S., Bassi R., Golan T., Kramer D., NiyogiK.K. Regulation of photosynthetic light harvesting involves intrathylacoidlumen pH sensing by the PsbS protein // J. Biol. Chem. 2004.V. 279. P.2286622874.30. Ikeuchi M., Uebayashi N., Sato F., Endo T. Physiological functions of PsbSdependent and PsbS-independent NPQ under naturally fluctuating lightconditions // Plant Cell Physiol. 2014. V. 55. P.
1286–1295.31. Kereïche S., Kiss A.Z., Kouril R., Boekema E., Horton P. The PsbS proteincontrols the macro-organization of photosystem II complexes in the granamembranes of higher plant chloroplasts // FEBS Lett. 2010. V. 584. P.754–764.32. Goral T.K., Johnson M.P., Duffy C. D.P., Brain A.P.R., Ruban A.V.,MullineauxC.W. Light-harvesting antenna composition controls themacrostructure and dynamics of thylakoid membranes in Arabidopsis // Plant J.2012. V. 69. P. 289301.33.
Mishanin V.I., Trubitsin B.V., Benkov M.A., Minin A.A., Tikhonov A.N.Light acclimation of shade-tolerant and light-resistant Tradescantia species:88induction of chlorophyll a fluorescence and P700 photooxidation, expressionof PsbS and Lhcb1 proteins // Photosynth. Res. 2016. V. 130.P. 275291.34. Fan M., Li M., Liu Z., Cao P., Pan X., Zhang H., Zhao X., Zhang J., ChangW.
Crystal structures of the PsbS protein essential for photoprotection in plants// Nature Structural & Molecular Biology. 2015. V. 22. N 9.P. 729737.35. Gilmore A.M., Yamamoto H.Y. Linear models relating xanthophylls andlumen acidity to non-photochemical fluorescence quenching: evidence thatantheraxanthinexplainszeaxanthin-independentquenching//Photosynth. Res. 1992.V. 35. P. 67–78.36. СапожниковД.И.,КрасовскаяТ.А.,МаевскаяА.Н.Изменениесоотношения основных каротиноидов пластид зеленых листьев придействии света // Докл.
АН СССР. 1957. Т. 113. № 2. С. 465467.37. Demmig-Adams B., Cohu C.M., Muller O., Adams W.W. Modulation ofphotosynthetic energy conversion efficiency in nature: from seconds to seasons// Photosynth. Res. 2012. V. 113. P. 75–88.38. Müller P., Li X.-P., Niyogi K.K. Non-photochemical quenching: a response toexcess light energy // Plant Physiol. 2001. V. 125. P. 1558–1566.39. Kyle D.J., Staehelin L.A., Arntzen C.J.
Lateral mobility of the light-harvestingcomplex in chloroplast membranes controls excitation energy distribution inhigher plants // Arch. Biochim. Biophys. 1983. V. 222. P. 527541.40. Allen J.F. Protein phosphorylation in regulation of photosynthesis // Biochim.Biophys. Acta. 1992. V. 1098. P. 275–335.41. Minagava J. State transitions - the molecular remodeling of photosyntheticsupercomplexes that controls energy flow in the chloroplast // Biochim.Biophys. Acta. 2011. V.
1807. P. 897–905.8942. Tikkanen M., Aro E.-M. Thylakoid protein phosphorylation in dynamicregulation of photosystem II in higher plants // Biochim. Biophys. Acta.2012. V. 1817. N 1. P. 232238.43. Wada M., Kong S.-G. Analysis of chloroplast movement and relocation inArabidopsis // in: R.P. Jarvis (Ed.), Chloroplast research in Arabidopsis,Methods and Protocols V.
1, Methods in Molecular Biology V. 774, HumanaPress, USA, 2011. P. 87–102.44. Luesse D.R., DeBlasio S.L., Hangarter R.P. Integration of phot1, phot2, andPhyB signalling in light-induced chloroplast movements // J. Exp. Bot. 2010.V. 61. N 15. P. 4387–4397.45. Kagawa T., Wada M. Phytochrome- and blue-light-absorbing pigmentmediated directional movement of chloroplasts in dark-adapted prothallial cellsof fern Adiantum as analyzed by microbeam irradiation // Planta.