Диссертация (1104736), страница 18
Текст из файла (страница 18)
// Macromolecules 1985, 18, 1864.[53] Hillmyer MA. Polydisperse block copolymers: Don't throw them away. // Journal of PolymerScience Part B: Polymer Physics 2007, 45, 3249.[54] Widin JM, Schmitt AK, Schmitt AL, Im K, Mahanthappa MK. Unexpected consequences ofblock polydispersity on the self-assembly of ABA triblock copolymers. // Journal of the AmericanChemical Society 2012, 134, 3834[55] Gavrilov AA, Kudryavtsev Y, Khalatur P, Chertovich A. Microphase separation in regular andrandom сopolymer melts by DPD simulations. // Chemical Physics Letters 2011, 503, 277.[56] Register RA.
Materials science: Continuity through dispersity. // Nature 2012, 483, 167.95[57] Beardsley TM, Matsen MW. Monte Carlo phase diagram for diblock copolymer melts. // TheEuropean Physical Journal E 2010, 32, 255.[58] Beardsley TM, Matsen MW. Effects of polydispersity on the order-disorder transition of diblockcopolymer melts. // The European Physical Journal E 2008, 27, 323.[59] Groot RD, Madden TJ. Dynamic simulation of diblock copolymer microphase separation.
// TheJournal of Chemical Physics 1998, 108, 8713.[60] Groot RD, Madden TJ, Tildesley DJ. On the role of hydrodynamic interactions in blockcopolymer microphase separation. // The Journal of Chemical Physics 1999, 110, 9739.[61] Li X, Guo J, Liu Y, Liang H. Microphase separation of diblock copolymer poly(styrene-bisoprene): A dissipative particle dynamics simulation study. // The Journal of Chemical Physics2009, 130, 74908.[62] Lynd NA, Mueler A, Hillmyer M.
Polydispersity and block copolymer self-assembly. //Progress in Polymer Science 2008, 33, 875.[63] Soto-Figueroa C, Rodríguez-Hidalgo M, Martínez-Magadán J, Vicente L. Dissipative particledynamics study of order−order phase transition of BCC, HPC, OBDD, and LAM structures of thepoly(styrene)−poly(isoprene) diblock copolymer. // Macromolecules 2008, 41, 3297.[64] Li Y, Qian H-J, Lu Z-Y.
The influence of one block polydispersity on phase separation ofdiblock copolymers: The molecular mechanism for domain spacing expansion. // Polymer 2013, 54,3716.[65] Likhtman AE, Semenov AN. "Stability of the OBDD structure for diblock copolymer melts inthe strong segregation limit''. // Macromolecules, 1994, 27, 3103.[66] Der-Jang L, Kung-Li W, Ying-Chi H, Kueir-Rarn L, Juin-Yih L, Chang-Sik H. Advancedpolyimide materials: Syntheses, physical properties and applications. // Progress in Polymer Science2013, 37, 907.[67] Ghosh MK, Mittal KL. Polyimides: Fundamentals and applications. Marcel Dekker Inc. NewYork, 1996.[68] Perepichka IF, Perepichka DF.
Handbook of thiophene-based materials: Applications in organicelectronics and photonics. John Wiley & Sons, 2009.[69] Манделькерн Л. Кристаллизация полимеров. М.; Л,: Химия, 1966.[70] Sperling LH. Introduction to Physical Polymer Science. Wiley, 2006.[71] Strobl G. The Physics of Polymers, 3-rd edition. Springer, 2007.[72] Бессонов МИ.
Полиимиды – класс термостойких полимеров. Наука, 1983.96[73] Кабанов ВА. Энциклопедия полимеров. Советская Энциклопедия, 1977.[74] Fischer EW. Molekulare Vorgänge bei der plastischen Verformung von Polymer-Einkristallen.// Naturforschung Z 1957, 12a, 753.[75] Keller A.
A note on single crystals in polymers: Evidence for a folded chain configuration. //Philosophical Magazine 1957, 2, 1171.[76] Till JrPH. The growth of single crystals of linear polyethylene. // Journal of Polymer SciencePart A 1957, 24, 301.[77] Strobl G. The Physics of Polymers, 3-rd edition. Springer, 2007.[78] Reiter G, Strobl GR. Progress in Understanding of Polymer Crystallization, Lecture Notes inPhysics 2007, 714.[79] Ivanov DA.
Semicrystalline polymers. In: Matyjaszewski K, Möller M editors. // PolymerScience: A Comprehensive Reference 2012, 1, 227.[80] Mark HF, Bikales NB. Encyclopedia of Polymer Science and Technology. Wiley, 2005.[81] Li CY, Cheng SZD. Semicrystalline Polymers, In: Mark HF, Bikales NM editors.
Encyclopediaof Polymer Science and Technology. Wiley 2005, 8, 1.[82] Shibaev VP. Liquid Crystalline Polymers. In: Matyjaszewski M, Möller M editors. // PolymerScience: A Comprehensive Reference 2012, 1, 259.[83] Anwar M, Turci F, Schilling T. Crystallization mechanism in melts of short n-alkane chains. //The Journal of Chemical Physics 2013, 139, 214904.[84] Anwar M, Berryman J, Schilling T.
Crystal nucleation mechanism in melts of short polymerchains under quiescent conditions and under shear flow. // The Journal of Chemical Physics 2014,141, 124910.[85] Anwar M, Schilling T. Crystallization of polyethylene: a molecular dynamics simulation studyof the nucleation and growth mechanisms. // Polymer 2015, 76, 307.[86] Yamamoto T. Molecular dynamics simulations of steady-state crystal growth and homogeneousnucleation in polyethylene-like polymer.
// The Journal of Chemical Physics 2008, 129, 184903.[87] Yamamoto T. Molecular dynamics simulations of polymer crystallization in highly supercooledmelt: Primary nucleation and cold crystallization. // The Journal of Chemical Physics 2010, 133,034904.[88] Yamamoto T. Molecular dynamics of polymer crystallization revisited: Crystallization from themelt and the glass in longer polyethylene. // The Journal of Chemical Physics 2013, 139, 054903.97[89] Luo C. Growth pathway and precursor states in single lamellar crystallization: MD simulations.// Macromolecules 2011, 44, 1523.[90] Luo C, Sommer JU. Disentanglement of linear polymer chains toward unentangled crystals. //ACS Macro Letters 2013, 2, 31.[91] Luo C.
Sommer JU. Frozen topology: entanglements control nucleation and crystallization inpolymers. // Physical Review Letters 2014, 112, 195702.[92] Yi P, Locker CR, Rutledge GC. Molecular Dynamics Simulation of Homogeneous CrystalNucleation in Polyethylene. // Macromolecules 2013, 46, 4723.[93] Triandafilidi V, Rottler J, Hatzikiriakos SG. Molecular dynamics simulations ofmonodisperse/bidisperse polymer melt crystallization.
// Journal of Polymer Science Part B 2016, 54,2318.[94] Nguyen HT, Smith TB, Hoy RS, Karayiannis NCh. Effect of chain stiffness on the competitionbetween crystallization and glass-formation in model unentangled polymers. // The Journal ofChemical Physics 2015, 143, 144901.[95] Svetlichnyi VM, Kudryavtsev VV. Polyimides and the problems of designing advancedstructural composite materials. // Journal of Polymer Science Part B: Polymer Physics 2003, 45, 140.[96] Yudin VE, Svetlichnyi VM. Effect of the structure and shape of filler nanoparticles on thephysical properties of polyimide composites.
// Russian Journal of General Chemistry 2010, 80,2157.[97] Lyulin SV, Larin SV, Gurtovenko AA, Lukasheva NV, Yudin VE, Svetlichnyj VM, Lyulin AV.Effect of the SO2 group in the diamine fragment of polyimides on their structural, thermophysical,and mechanical properties. // Journal of Polymer Science Part A: Polymer Chemistry 2012, 54, 631.[98] Nazarychev VM, Larin SV, Lukasheva NV, Glova AD, Lyulin SV.
Evaluation of thecharacteristic equilibration times of bulk polyimides via full-atomic computer simulation. // Journalof Polymer Science Part A: Polymer Chemistry 2013, 55, 570.[99] Larin SV, Falkovich SG, Nazarychev VM, Gurtovenko AA, Lyulin AV, Lyulin SV. Moleculardynamics simulation of polyimide matrix pre-crystallization near the surface of a single-walledcarbon nanotube. // RSC Advances 2014, 4, 830.[100] Yudin VE, Feldman AY, Svetlichnui VM, Shumakov AN, Marom G.
Crystallization of RBAPB type polyimide modified by carbon nano-particles. // Composites Science and Technology2007, 67, 789.98[101] Yudin VE, Shumakov VM, Gubanova GN, Didenko AL, Sukhanova TE, Kuidryavtsev VV,Ratner S, Marom G. Semicrystalline polyimide matrices for composites: Crystallization andproperties. // Journal of Applied Polymer Science 2002, 83, 2873.[102] Larin SV, Glova AD, Serebryakov EB, Nazarychev VM, Kenny JM, Lyulin SV. Influence ofthe carbon nanotube surface modification on the microstructure of thermoplastic binders.
// RSCAdvances 2015, 5, 51621.[103] Falkovich SG, Larin SV, Lyulin AV, Yudin VE, Kenny JM, Lyulin SV. Influence of thecarbon nanofiller surface curvature on the initiation of crystallization in thermoplastic polymers. //RSC Advances 2014, 4, 48606.[104] Falkovich SG, Nazarychev VM, Larin SV, Kenny JM, Lyulin SV. Mechanical Properties of aPolymer at the Interface Structurally Ordered by Graphene. // The Journal of Physical Chemistry C2016, 120, 6771.[105] Lyulin SV, Larin SV, Nazarychev VM, Fal’kovich SG, Kenny JM.
Multiscale computersimulation of polymer nanocomposites based on thermoplastics. // Polymer Science Series C 2016,58, 2.[106] Ivanov V, Rodionova A, Martemyanova Ju, Stukan M,Müller M, Paul W, Binder K.Conformational properties of semiflexible chains at nematic ordering transitions in thin films: AMonte Carlo simulation. // Macromolecules 2014, 47, 1206.[107] Komarov PV, Veselov IN, Khalatur PG. Self-organization of amphiphilic block copolymers inthe presence of water: A mesoscale simulation. // Chemical Physics Letters 2014, 605/606, 22.[108] Nikunen P, Vattulainen I, Karttunen M. Reptational dynamics in dissipative particle dynamicssimulations of polymer melts.
// Physical Review E 2007, 75, 036713.[109] Steinhardt P, Nelson D, Ronchetti M. Icosahedral Bond Orientational Order in SupercooledLiquids. // Physical Review Letters 1981, 47, 1297.[110] Клумов БА. Структурные особенности системы Ленарда-Джонса при плавлении икристаллизации. // Письма в ЖЭТФ 2013, 9, 372.[111] Steinhardt PJ, Nelson DR, Ronchetti M. Bond-orientational order in liquids and glasses. //Physical Review B 1983, 28, 784.[112] Wang Y, Dellago C. Structural and Morphological Transitions in Gold Nanorods: A ComputerSimulation Study.
// The Journal of Chemical Physics B 2003, 107, 9214.[113] Tan P, Xu N, Xu L. Visualizing kinetic pathways of homogeneous nucleation in colloidalcrystallization. // Nature Physics 2014, 10, 73.99[114] Zhang XB, Li ZS, Lu ZY, Sun CC. Roles of branch content and branch length incopolyethylene crystallization: Molecular Dynamics simulations.
// Macromolecules 2002, 35, 106.[115] Israelachvili JN, Mitchell DJ, Ninham BW. Theory of self-assembly of hydrocarbonamphiphiles into micelles and bilayers. // Journal of the Chemical Society, Faraday Transactions 21976, 72, 1525.[116] Hofmann AF, Small DM. Detergent Properties of Bile Salts: Correlation with PhysiologicalFunction. // Annual Review of Medicine 1967, 18, 333.[117] Coello A, Meijide F, Nunez ER, Tato JV. Aggregation Behavior of Bile Salts in AqueousSolution. // Journal of Pharmaceutical Sciences 1996, 85, 9.[118] Palazzo G. Wormlike Reverse Micelles.












