Диссертация (1104736), страница 19
Текст из файла (страница 19)
// Soft Matter 2013, 9, 10668.[119] Kreilgaard M. Influence of microemulsions on cutaneous drug delivery. // Advanced DrugDelivery Reviews 2002, 54, 77.[120] Byk G. Pharmaceutical Perspectives of Nucleic Acid-Based Therapy, Eds. Mahato RI, KimSW. CRC Press 2003, 272.[121] Walker S, Sofia MJ, Kakarla R, Kogan NA, Wierichs L, Longley CB, Bruker K, Axelrod HR,Midha S, Babu S, Kahne D. Cationic facial amphiphiles: A promising class of transfection agents.
//Proceedings of the National Academy of Sciences USA 1996, 93, 1585.[122] Faustino C, Serafim C, Rijo P, Reis CP. Bile acids and bile acid derivatives: use in drugdelivery systems and as therapeutic agents. // Expert Opinion on Drug Delivery 2016, 13, 1133.[123] Tamesue N, Inoue T, Juniper K.
Solubility of cholesterol in bile salt-lecithin model systems.// American Journal of Digestive Diseases 1973, 18, 670.[124] Shrestha H, Bala R, Arora S. Lipid-based drug delivery systems. // Journal of Pharmaceutics2014, 10, 801820.[125] Kumar R, Katare OP. Lecithin organogels as a potential phospholipid-structured system fortopical drug delivery.
// AAPS PharmSciTech 2005, 6, 40.[126] Raut S, Bhadoriya SS, Uplanchiwar V, Mishra V, Gahane A, Jain SK. Lecithin organogel: Aunique micellar system for the delivery of bioactive agents in the treatment of skin aging. // ActaPharmaceutica Sinica B 2012, 2, 8.[127] Scartazzini R, Luisi PL. Organogels from lecithins. // Journal of Physical Chemistry 1988, 92,829.100[128] Tung SH, Huang YE, Raghavan SR. A new reverse wormlike micellar system: Mixtures ofbile salt and lecithin in organic liquids.
// Journal of the American Chemical Society 2006, 128,5751.[129] Shchipunov YuA. Lecithin organogel: A micellar system with unique properties. // Colloidsand Surfaces A: Physicochemical and Engineering Aspects 2011, 183, 541.[130] Shchipunov YuA, Shumilina EV. Lecithin bridging by hydrogen bonds in the organogel.
//Materials Science and Engineering C 1995, 3, 43.[131] Chowdhary J, Ladanyi BM. Molecular simulation study of water mobility in aerosol-OTreverse micelles. // Journal of Physical Chemistry A 2011, 115, 6306.[132] Faeder J, Ladanyi BM. Molecular Dynamics Simulations of the Interior of Aqueous ReverseMicelles. // Journal of Chemical Physics B 2000, 104, 1033.[133] Chowdhary J, Ladanyi BM. Molecular dynamics simulation of aerosol-OT reverse micelles.// Journal of Chemical Physics B 2009, 113, 15029.[134] Abel S, Waks M, Urbach W, Marchiv M. Structure, Stability, and Hydration of a Polypeptidein AOT Reverse Micelles. // Journal of the American Chemical Society 2006, 128, 382.[135] Abel S, Sterpone F, Bandyopadhyay S, Marchiv M. Molecular modeling and simulations ofAOT−water reverse micelles in isooctane: Structural and dynamic properties.
// Journal of ChemicalPhysics B 2004, 108, 19458.[136] Vierros S, Sammalkorpi M. Role of hydration in phosphatidylcholine reverse micelle structureand gelation in cyclohexane: a molecular dynamics study. // Physical Chemistry Chemical Physics2015, 17, 14951.[137] Vierros S, Sammalkorpi M. Phosphatidylcholine reverse micelles on the wrong track inmolecular dynamics simulations of phospholipids in an organic solvent.
// Journal of ChemicalPhysics 2015, 142, 094902.[138] Peter C, Kremer K. Multiscale simulation of soft matter systems – from the atomistic to the coarsegrained level and back. // Soft Matter 2009, 5, 4357.[139] Elliott JA. Novel approaches to multiscale modelling in materials science. // InternationalMaterials Reviews 2011, 56, 207.[140] Komarov PV, Chiu YT, Chen SM, Khalatur PG, Reineker P. Highly Cross-Linked EpoxyResins: An Atomistic Molecular Dynamics Simulation Combined with a Mapping/Reverse MappingProcedure.
// Macromolecules 2007, 40, 8104.[141] Komarov PV, Khalatur PG, Khokhlov AR. A new concept for molecular engineering of artificialenzymes: a multiscale simulation. // Soft Matter 2016, 12, 689.101[142] Kamerlin SCL, Vicatos S, Dryga A, Warshel A. Coarse-grained (multiscale) simulations instudies of biophysical and chemical systems. // Annual Review of Physical Chemistry 2011, 62, 41.[143] Pablo JJ. Coarse-grained simulations of macromolecules: From DNA to nanocomposites. //Annual Review of Physical Chemistry 2011, 62, 555.[144] Korolev N, Nordenskiöld L, Lyubartsev AP.
Multiscale coarse-grained modelling of chromatincomponents: DNA and the nucleosome. // Advances in Colloid and Interface Science 2016, 232, 36.[145] Saunders MG, Voth GA. Coarse-graining methods for computational biology. // AnnualReview of Biophysics 2013, 42, 73.[146] Magid LJ. The surfactant−polyelectrolyte analogy. // The Journal of Physical Chemistry B1998, 102, 4064.[147] Groot R, Rabone K.
Mesoscopic simulation of cell membrane damage, morphology changeand rupture by nonionic surfactants. // Biophysical Journal 2001, 81, 725.[148] Srivastava A, Voth G. Hybrid approach for highly coarse-grained lipid bilayer models. //Journal of Chemical Theory and Computation 2013, 9, 750.[149] Tu K, Tobias D, Klein M. Constant pressure and temperature molecular dynamics simulationof a fully hydrated liquid crystal phase dipalmitoylphosphatidylcholine bilayer. // BiophysicalJournal 1995, 69, 2558.[150] Guo XD, Zhang, LJ, Wu ZM, Qian Y.
Dissipative particle dynamics studies on microstructureof pH-Sensitive micelles for sustained drug delivery. // Macromolecules 2010, 43, 7839.[151] Huynh L, Perrot N, Beswick V, Rosilio V, Curmi P, Sanson A, Jamin N. Structural propertiesof POPC monolayers under lateral compression: Computer simulations analysis. // Langmuir 2014,30, 564.[152] Holmboe M, Larsson P, Anwar J, Bergström C. Partitioning into colloidal structures of fastedstate intestinal fluid studied by molecular dynamics simulations.
// Langmuir 2016, 32, 12732.[153] Marrink S, Mark A. Molecular dynamics simulations of mixed micelles modeling human bile.// Biochemistry 2002, 41, 5375.[154] Partay L, Jedlovszky P, Sega M. Molecular aggregates in aqueous solutions of bile acid salts.Molecular dynamics simulation study. // The Journal of Physical Chemistry B 2007,111, 9886.[155] Verde A, Frenke D. Simulation study of micelle formation by bile salts.
// Soft Matter 2010, 6,3815.[156] Mögel H, Wahab M, Schmidt R, Schiller P. Computer simulation of solubilization ofliposomes by bile salts. // Chemistry Letters 2012, 41, 1066.102[157] Haustein M, Schiller P, Wahab M, Mögel H. Computer simulations of the formation of bilesalt micelles and bile salt/DPPC mixed micelles in aqueous solutions.
// Journal of SolutionChemistry 2014, 43, 1755.[158] Haustein M, Wahab M, Mögel H, Schiller P. Vesicle solubilization by bile salts: comparison ofmacroscopic theory and simulation. // Langmuir 2015, 31, 4078.[159] Cheng C-Y, Oh H, Wang T-Y, Raghavan SR, Tung S-H. Mixtures of lecithin and bile salt canform highly viscous wormlike micellar solutions in water. // Langmuir 2014, 30, 10221.[160] Wu Z, Yan Y, Huang J. Advanced molecular self-assemblies facilitated by simple molecules.
//Langmuir 2014, 30, 14375.[161] Lin S-T, Lin C-S, Chang Y-Y, Whitten A, Sokolova A, Chun-Ming W, Ivanov V, KhokhlovA, Tung S-H. Effects of alkali cations and halide anions on the self-assembly of phosphatidylcholinein oils. // Langmuir 2016, 32, 12166.[162] Lee H-Y, Diehn K, Ko S, Tung S-H, Raghavan S. Can simple salts influence self-assembly inoil? Multivalent cations as efficient gelators of lecithin organosols.
// Langmuir 2010, 26 13831.[163] Binder H, Zschornig O. The effect of metal cations on the phase behavior and hydrationcharacteristics of phospholipid membranes. // Chemistry and Physics of Lipids 2002, 115, 39.[164] Schubert BA, Kaler EW, Wagner NJ. The microstructure and rheology of mixedcationic/anionic wormlike micelles. // Langmuir 2003, 19, 4079.[165] Kolusheva S, Friedman J, Angel I, Jelinek R.
Membrane interactions and metal ion effects onbilayer permeation of the lipophilic ion modulator DP-109. // Biochemistry 2005, 44, 12077.[166] Baldwin R. How Hofmeister ion interactions affect protein stability. // Biophysical Journal1996, 71, 2056.[167] Lo Nostro P, Ninham BW. Hofmeister phenomena: An update on ion specificity in biology. //Chemical Reviews 2012, 112, 2286.[168] Korchagina E, Philippova O. Ion-specific self-assembly of hydrophobically modifiedpolycation of natural origin.
// Macromolecules 2015, 48, 8622.[169] Pattanayak S, Chowdhuri S. Effect of water on solvation structure and dynamics of ions in thepeptide bond environment: Importance of hydrogen bonding and dynamics of the solvents. // TheJournal of Physical Chemistry B 2011, 115, 13241.[170] Pattanayak S, Chowdhuri SA. Molecular dynamics simulations study on the behavior of liquidN-methylacetamide in presence of NaCl: Structure, dynamics and H-bond properties. // Journal ofMolecular Liquids 2012, 172, 102.103[171] Pattanayak S, Chowdhuri S. Size dependence of solvation structure and dynamics of ions inliquid N-methylacetamide: A molecular dynamics simulation study.
// Journal of Chemical Theoryand Computation 2012, 11, 361.[172] Baburkin P, Komarov P, Khizhnyak S, Pakhomov P. Simulation of gelation process incysteine–silver solution by dissipative particle dynamics method. // Colloid Journal 2015, 77, 561.[173] Manning G. Limiting laws and counterion condensation in polyelectrolyte solutions I.colligative properties. // The Journal of Chemical Physics 1969, 51, 924.[174] Partay L, Sega M, Jedlovszky PM. Morphology of bile salt micelles as studied by computersimulation methods.
// Langmuir 2007, 23, 12322.[175] Ivanov V, Paul W, Binder K. Finite chain length effects on the coil-globule transition of stiffchain macromolecules: A Monte Carlo simulation. // The Journal of Chemical Physics 1998, 109,5659.[176] Khalatur P. Effect of volume interactions on the shape of a polymer coil. // Polymer ScienceU.S.S.R. 1980, 22, 2438.[177] Israelachvili JN. Intermolecular and surface forces, 3rd ed. Academic Press: San Diego, 2011.[178] Madenci D, Salonen A, Schurtenberger P, Pedersen JS, Egelhaaf SU.












