Диссертация (1104736), страница 17
Текст из файла (страница 17)
Self-organization processes inlecithin-bile salt mixtures: computer simulation. // 80th Prague Meeting on Macromolecules "Selfassembly in the World of Polymers" Prague, Check Republic, 2016.[А13] Markina A., Ivanov V., Komarov P., Larin S., Kenny J., Lyulin S. Coarse-grained computersimulation in polyimide melts. // 80th Prague Meeting on Macromolecules "Self-assembly in theWorld of Polymers" Prague, Check Republic, 2016.[А14] Маркина А., Иванов В., Комаров П. Структурообразование в растворах лецитина и солижелчной кислоты: компьютерное моделирование. // тезисы докладов, 1-я Всероссийскаяконференция с элементами научной школы Компьютерное моделирование гетероциклическихполимеров в рамках кластера конференций по органической химии ОргХим-2016, СанктПетербург, Россия, 2016.[А15] Маркина А., Иванов В., Комаров П.
Многомасштабное моделирование кристаллизациив расплавах. // тезисы докладов, 1-я Всероссийская конференция с элементами научной школыКомпьютерное моделирование гетероциклических полимеров в рамках кластера конференцийпо органической химии ОргХим-2016, Санкт-Петербург, Россия, 2016.[А16] Маркина А. Могут ли простые крупнозернистые модели использоваться для описаниясамоорганизации супрамолекулярных структур? // Международная научная конференциястудентов,аспирантовимолодыхученых«Ломоносов»,Москва,Россия,2017.91СПИСОК ЛИТЕРАТУРЫ[1] Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford: Clarendon Press, 1989.[2] Español P. Dissipative Particle Dynamics with energy conservation.
// Europhysics Letters 1997,40, 631.[3] Español P, Warren PB. Statistical Mechanics of Dissipative Particle Dynamics. // EurophysicsLetters 1995, 30, 191.[4] Groot RD, Warren PB. Dissipative particle dynamics: Bridging the gap between atomistic andmesoscopic simulation. // The Journal of Chemical Physics 1997, 107, 4423.[5] Español P, Warren PB. Perspective: Dissipative Particle Dynamics. // The Journal of ChemicalPhysics 2017, 146, 150901.[6] Ewald P. Die Berechnung optischer und elektrostatischer Gitterpotentiale.
// Annals of Physics1921, 64, 253.[7] Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T,Caldwell JW, Kollman PA. A second generation force field for the simulation of proteins, nucleicacids, and organic molecules. // Journal of the American Chemical Society 1995, 117, 5179.[8] Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL. Evaluation and reparametrization ofthe OPLS-AA force field for proteins via comparison with accurate quantum chemical calculationson peptides.
// The Journal of Physical Chemistry B 2001, 105, 6474.[9] Jorgensen WL., Maxwell DS., Tirado-Rives J. Development and testing of the OPLS all-atomforce field on conformational energetics and properties of organic liquids. // Journal of the AmericanChemical Society 1996, 118, 11225.[10] Sun H. Ab initio calculations and force field development for computer simulation ofpolysilanes. // Macromolecules 1995, 28, 701.[11] Sun H, Mumby SJ, Maple JR, Hagler AT.
An ab Initio CFF93 All-atom force field forpolycarbonates. // Journal of the American Chemical Society 1994, 116, 2978.[12] Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, Gunsteren WF.Definition and testing of the GROMOS force-field versions 54A7 and 54B7. // European BiophysicsJournal 2011, 40, 843.[13] Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink S- J. TheMARTINI coarse-grained force field: extension to proteins. // Journal of Chemical Theory andComputation 2008, 4, 819.92[14] Marrink SJ, Risselada HJ, Yefimov S et al. The MARTINI force field: coarse grained model forbiomolecular simulations. // The Journal of Physical Chemistry B 2007, 111, 7812.[15] Davis RS, Sunil Kumar P, Sperotto MM, Laradji M. Predictions of phase separation in threecomponent lipid membranes by the MARTINI force field.
// The Journal of Physical Chemistry B.2013, 117, 4072.[16] Shinoda W, DeVane R, Klein ML. Zwitterionic lipid assemblies: molecular dynamics studies ofmonolayers, bilayers, and vesicles using a new coarse grain force field. // The Journal of PhysicalChemistry B 2010, 114, 6836.[17] Hildebrand JH. Solubility. XII. Regular Solutions. // Journal of the American Chemical Society1929, 51, 66.[18] Hildebrand HJ. Order from Chaos. // Science 1965, 150, 441.[19] Komarov PV, Veselov IN, Chu PP, Khalatur PG, Khokhlov AR.
Atomistic and mesoscalesimulation of polymer electrolyte membranes based on sulfonated poly(ether ether ketone).// Chemical Physics Letters 2007, 487, 291.[20] Komarov PV, Veselov IN, Khalatur PG. Nanoscale morphology in sulphonated poly (Etherether ketone)-based ionomeric membranes: Mesoscale simulations. // Polymer Science Series A2010, 52, 191.[21] Иванов ВА, Рабинович АЛ, Хохлов АР. Методы компьютерного моделирования дляисследования полимеров и биополимеров. Книжный дом «ЛИБРОКОМ», 2009.[22] Аскадский АА, Кондращенко ВИ. Компьютерное материаловедение полимеров.
Том 1.Атомный и молекулярный уровни. Научный Мир, 1999.[23] Brandrup J, Immergut EH, Grulke EA. Polymer Handbook 4th Edition, 2003, 2, 2250.[24] Kamble R, Ghag M, Gaikawad S, Panda BK. Halloysite nanotubes and applications. // Journalof Advanced Scientific Research 2012, 3, 25.[25] Lvov Y, Abdullayev E. Functional polymer—clay nanotube composites with sustained releaseof chemical agents. // Progress in Polymer Science 2013, 38, 1690.[26] Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B. Halloysite clay minerals. //Clay Minerals 2005, 40, 383.[27] Joo Y, Jeon Y, Lee SU, Sim JH, Ryu J, Lee S, Lee H, Sohn D.
Aggregation and stabilization ofcarboxylic acid functionalized halloysite nanotubes (HNT-COOH). // The Journal of PhysicalChemistry C 2012, 116, 18230.93[28] Szpilska K, Czaja K, Kudla S. Halloysite nanotubes as polyolefin fillers. // Polimery 2015, 60,359.[29] Xu W, Luo B, Wen W, Xie W, Wang X, Liu M, Zhou C.
Surface modification of halloysitenanotubes with l-lactic acid: An effective route to high-performance poly(l-lactide) composites. //Journal of Applied Polymer Science 2015, 132, 41451.[30] Pasbakhsh P, Ismail H, Ahmad Fauzi MN, Bakar AF. EPDM/modified halloysitenanocomposites. // Applied Clay Science 2010, 48, 405.[31] Tang Y, Deng S, Ye L, Yang C, Yuan Q, Zhang J, Zhao C. Effects of unfolded and intercalatedhalloysites on mechanical properties of halloysite–epoxy nanocomposites. // Composites Part A2011, 42, 345.[32] Bates FS, Fredrickson GH. Block copolymer thermodynamics: theory and experiment.
// AnnualReview of Physical Chemistry 1990, 41, 525.[33] Гросберг АЮ, Хохлов АР. Статистическая физика макромолекул. – М.: Наука, 1989, 344.[34] Krausch G. Surface induced self-assembly in thin polymer films. // Materials Science andEngineering R 1995, 14, 1.[35] Leibler L. Theory of microphase separation in block copolymers.
// Macromolecules 1980, 13,1602.[36] Matsen MW, Bates FS. Unifying weak- and strong-segregation block copolymer theories. //Macromolecules 1996, 29, 1091.[37] Khandpur AK, Förster S, Bates FS, Hamley IW, Ryan AJ, Bras W, Almdal K, Mortensen K.Polyisoprene-polystyrene diblock copolymer phase diagram near the order-disorder transition. //Macromolecules 1995, 28, 8796.[38] Matsen MW. Fast and accurate SCFT calculations for periodic blockcopolymer morphologiesusing the spectral method with Anderson mixing. // The European Physical Journal E 2009, 30, 361.[39] Bates FS, Schulz MF, Khandpur AK, Förster S, Rosedale JH, Almdal K, Mortensen K.Fluctuations, conformational asymmetry and block copolymer phase behaviour. // Chemical Society.Faraday Discussions 1994, 98, 7.[40] Helfand E, Wasserman Z.
Block copolymer theory. 4. Narrow interphase approximation. //Macromolecules 1976, 9, 879.[41] Семёнов АН. К теории микрофазного расслоения в расплавах блок- сополимеров. //ЖЭТФ 1985, 88, 1242.94[42] Matsen M, Schick M. Stable and unstable phases of a diblock copolymer melt. // PhysicalReview Letters 1994, 72, 2660.[43] Matsen MW, Bates FS. Unifying weak- and strong-segregation block copolymer theories. //Macromolecules 1996, 29, 1091.[44] Matsen MW.
Effect of Architecture on the Phase Behavior of AB-Type Block CopolymerMelts. // Macromolecules 2012, 45, 2161.[45] Tyler. CA, Morse DC. Orthorhombic Fddd network in triblock and diblock copolymer melts. //Physical Review Letters 2005, 94, 208302.[46] Wang Y, Kim MI, Akasaka S, Saijo K, Hasegawa H, Hikima T, Takenaka M. Fddd structure inpolystyrene-block-polyisoprenediblockcopolymer/polystyrenehomopolymerblends.//Macromolecules 2016, 49, 2257.[47] Khandpur AK, Föster S, Bates FS, Hamley IW, Ryan AJ, Bras W, Almdal K, Mortensen K,Polyisoprene – Polystyrene diblock copolymer phase diagram near the order-disorder transition.
//Macromolecules 1995, 28, 8796.[48] Matyjaszewski K, Tsarevsky NV. Nanostructured functional materials prepared by atom transferradical polymerization. // Nature Chemistry 2009, 1, 276.[49] Lynd NA, Hillmyer MA. Influence of polydispersity on the self-assembly of diblockcopolymers. // Macromolecules. 2005, 38, 8803.[50] Lynd NA, Hillmyer MA Effects of polydispersity on the order−disorder transition in blockcopolymer melts. // Macromolecules. 2007, 40, 8050.[51] Lynd NA, Hamilton BD, Hillmyer MA.
The role of polydispersity in the lamellar mesophase ofmodel diblock copolymers. // Journal of Polymer Science Part B: Polymer Physics 2007, 45, 3386.[52] Hashimoto T, Tanaka H, Hasegawa H. Uniformity of microdomain size of block polymers ascompared with uniformity of their molecular weights.












