Диссертация (1104250), страница 11
Текст из файла (страница 11)
Mansur. Synthesis and characterization of water-dispersed CdSe/CdScore-shell quantum dots prepared via layer-by-layer method capped with carboxylic-functionalizedpoly(vinyl alcohol) // Mat. Res. - 2014. - vol.17. - supl.1.44. L. Xu, X. Huang, J. Zhu, H. Chen, K. Chen. Reduced photo-instability of luminescence spectrumof core-shell CdSe/CdS nanocrystals. // J of Mat. Science. – 2000. - vol.
35. - issue 6. pp 1375-1378.45. SH Wei, A Zunger. Calculated natural band offsets of all II–VI and III–V semiconductors:Chemical trends and the role of cation d orbitals // Applied Physics Letters. - 1998. - 72 (16). - 20112013.46. D. Dorfs, S. Hickey. and A. Eychmüller. Type-I and Type-II Core–Shell Quantum Dots: Synthesisand Characterization. // Nanotechnologies for the Life Sciences. - 2011.
- 479. - ISBN:978-3-527-32166-7.47. M. Smith, A. Mohs, S. Nie. Tuning the optical and electronic properties of colloidal nanocrystalsby lattice strain. // Nat. Nanotechnol. - 2009. - 4. 56–63.48. SH. Wei, A. Zunger. Predicted band-gap pressure coefficients of all diamond and zinc-blendesemiconductors: Chemical trends. // Phys.
Rev. B. - 1999. - 60. - 5404–5411.49. S. Tolbert, A. Alivisatos. High-pressure structural transformations in semiconductor nanocrystals.// Annu. Rev. Phys. Chem. - 1995. - 46. - 595–625.50. J. Persson, U. Hakanson, M. Johansson, L. Samuelson, M. Pistol M. Strain effects on individualquantum dots: Dependence of cap layer thickness.
// Phys. Rev. B. - 2005. - 72. 085302.51. Y. Li, X. Gong & S. Wei. Ab initio all-electron calculation of absolute volume deformationpotentials of IV–IV, III–V and II–VI semiconductors: the chemical trends. // Phys. Rev. B. -1072006. - 73. – 245206.52. A. Smith, A. Mohs, and S. Nie, Tuning the Optical and Electronic Properties of ColloidalNanocrystals by Lattice Strain, Nature Nanotechnology. - 2009.
- 4(1). - 56-63.53. C. Donega, R. Koole. Size Dependence of the Spontaneous Emission Rate and Absorption CrossSection of CdSe and CdTe Quantum Dots. J. Phys. Chem. - 2009. - 113. - 6511.54. W. Yu, L. Qu, W. Guo, X. Peng. Experimental Determination of the Extinction Coefficient ofCdTe, CdSe and CdS Nanocrystals. // Chem. Mater. - 2004. - 16. - 560.55. R. Marcu. On the theory of oxidation-reduction reactions involving electron transfer. // J ChemPhys. - 1956. - 24.
966–978.56. T. Sakata, K. Hashimoto, M. Hiramoto. New aspects of electron-transfer on semiconductorsurface-dye-sensitization system. // J. Phys. Chem. - 1990. - 94 (7). - pp 3040–3045.57. K. Tvrdy, P. Frantsuzov and P.. Kamat. Photoinduced electron transfer from semiconductorquantum dots to metal oxide nanoparticles. // Proc.
Natl. Acad. Sci. U. S. A. - 2011. - 108. - 29– 34.58. J. Shefali, S. Shailesh, K. Kumara. Synthesis and properties of CdSe Quantum Dot sensitized ZnOnanocomposites. // Physica E. 20011. - 44. - 555–564.59. I. Barceló, T. Lana-Villarreal, R. Gómez. Efficient sensitization of ZnO nanoporous films withCdSe QDs grown by Successive Ionic Layer Adsorption and Reaction (SILAR). // Journalof Photochemistry and Photobiology A: Chemistry. - 2011. - 220. - 47–53.60. K. Prabakar, S. Minkyu, S.
Inyoung and K. Heeje. CdSe quantum dots co-sensitized TiO2photoelectrodes: particle size dependent properties. // J. Phys. D: Appl. Phys. 2010. - 43. - 01. - 2002.61. R. Zhou, Q. Zhang, E. Uchaker, J. Lan, M. Yin and G. Cao. Mesoporous TiO2 beads for highefficiency CdS/CdSe quantum dot co-sensitized solar cells. // J. Mater. Chem. A. - 2014. - 2. - 25172525.62.
M. Hossain , J. Jennings , Z. Koh, Q. Wang. Carrier Generation and Collection in CdS/CdSeSensitized SnO2 Solar Cells Exhibiting Unprecedented Photocurrent Densities. // ACS Nano. – 2011. 5 (4). - pp 3172–3181.10863. Y. Lin, Y. Lin. Y. Meng, Y. Tu, X. Zhang. CdS/CdSe co-sensitized SnO2 photoelectrodes forquantum dots sensitized solar cells // Optics Communications. - 2015. - Vol.
346. - 64–68.64. P. Bueno, J. Varela, E. Longo. SnO2, ZnO and related polycrystalline compound semiconductors:An overview and review on the voltage-dependent resistance (non-ohmic) feature. // Journal of theEuropean Ceramic Society. - 2008. - 28. - 505–529.65. G.Blazer, T.Ruhl, C.Diehl, M.Ulrich, D.Kohl. Nanostructured semiconductor gas sensors toevercome sensitivity limitations due to percolation effects. // Physica A. - 1999. - 266.
- 218.66. Р. Васильев, Л. Рябова, М. Румянцева, А. Гаськов. Неорганические структуры какматериалы для газовых сенсоров. // Успехи Химии. - 2004. - 73(10). - 1019.67. J. Zemel. Theoretical description of gas-film interaction on tin oxide (SnOx). // Thin Solid Films. 1988. - 163. - 189.68. V. Demarne, A. Grisel, R. Sanjines, D. Rosenfeld, F. Levy.
Electrical transport properties of thinpolycristalline SnO2 film sensors. // Sens.Actuators B. -1992. - 47. - 704.69. T. Rantala, V. Lantto, T. Rantala. Computational approaches to the chemical sensitivity ofsemiconducting tin dioxide. // Sens. Actuators B. - 1998. - 47. - 59.70. R. Vasiliev, M. Rumyantseva, S.
Dorofeev, Y. Potashnikova, L. Ryabovab, A. Gaskovb.Crystallite size effect on the conductivity of the ultradisperse ceramics of SnO2 and In2O3 . //Mendeleev Communications. - 2004. - Vol 14. - Issue 4. - Pages 167–169.71. T. Lopez-Luke, A. Wolcott, L. Xu, S ю Chen, Z. Wen, J. Li, E. de La Rosa-Cruz, and J. Zhang.Nitrogen Doped and CdSe Quantum Dot Sensitized Nanocrystalline TiO2 Films for Solar EnergyConversion Applications // J. Phys. Chem. C. - 2008. - 112. - 1282-1292.72. L. Nikolenko, V.
Razumov. Colloidal quantum dots in solar cells. // Russ. Chem. Rev. - 2012. - 82.- 429.73. W. W. Yu, Y. A. Wang, and X. Peng. Formation and Stability of Size-, Shape-, and StructureControlled CdTe Nanocrystals: Ligand Effects on Monomers and Nanocrystals // Chem. Mater. 2003.- 15. - 4300.10974. D. Chowdhury, S. Ghosh. Applications of Quantum Dots in generating Photoelectricity. //American Journal of Electronics & Communication.
- 2014. -Vol. 1(1). - 22-26.75. K. Žídek, M. Abdellah, K. Zheng, T. Pullerits. Electron relaxation in the CdSe quantum dot - ZnOcomposite: prospects for photovoltaic applications. // Scientific Reports. - 2014. - 4. - 7244.76. A. Greytak, P. Allen, W. Liu, J. Zhao, E. Young, Z.
Popovi ć , B. Walker, D. Nocera, M. Bawendi.Alternating layer addition approach to CdSe/CdS core/shell quantum dots with nearunity quantum yield and high on-time fractions. // Chem. Sci. - 2012. - 3. - 2028-2034.77. B. Pal, Y. Ghosh, S. Brovelli, R. Laocharoensuk, V. Klimov, J. Hollingsworth, and H. Htoon.‘Giant’ CdSe/CdS Core/Shell Nanocrystal Quantum Dots As Efficient ElectroluminescentMaterials: Strong Influence of Shell Thickness on Light-Emitting Diode Performance.
Nano Lett. 2012. - 12 (1) - pp 331–336.78. O. Chen, J. Zhao, V. Chauhan, J. Cui, C. Wong, D. Harris, H. Wei, H. Han, D. Fukumura, R. Jainand M. Bawendi. Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emissionlinewidths and suppressed blinking. // Nature Materials. - 2013. - 12. - 445–451.79. A. Dobrovolsky, R. Vasiliev, K. Drozdov, O. Maslova, M. Rumyantseva, A. Gaskov, L. Ryabova,and D. Khokhlov. Optical and photoelectric properties of nanocrystalline SnO2-CdSe quantum dotstructures. // Phys.
Status Solidi C. - 2010. - 7. - No. 3–4. - 972–975.80. W. Yu and X. Peng. Formation of High-Quality CdS and Other II–VI Semiconductor Nanocrystalsin Noncoordinating Solvents: Tunable Reactivity of Monomers. // Angew. Chem. Int. Ed. - 2002. - 41.- 2368–2371.81. R. Vasiliev, S. Dorofeev, D. Dirin, D. Belov, and T. Kuznetsova // Synthesis and optical propertiesof PbSe and CdSe colloidal quantum dots capped with oleic acid // Mendeleev Commun. 2004. 14(4). - 169.82. Г. Шандрюк, А.
Ребров, Р. Васильев, С. Дорофеев, А. Мерекалов, А. Гаськов, Р. Тальрозе.СтабилизациянаночастицселенидакадмиявжидкокристаллическомВысокомолекулярные соединения . - 2005. - том 47. - № 10. - с . 1879-1881.полимере.//11083. W. Yu, L. Qu, W. Guo, X. Peng. Experimental Determination of the Extinction Coefficient ofCdTe, CdSe and CdS Nanocrystals. // Chem.
Mater. - 2004. - 16. - 60.84. J. Jasieniak, L. Smith, J. van Embden, P. Mulvaney, M. Califano. Re-examination of the SizeDependent Absorption Properties of CdSe Quantum Dots // J. Phys. Chem. C. - 2009. - 113.- 19468–19474.85. L. Qu, Z. Peng, and X.
Peng. Alternative Routes toward High Quality CdSe Nanocrystals // NanoLett. - 2001 – 1 – p. 333-337.86. R. Vasiliev, S. Dorofeev, M. Rumyantseva, L. Ryabova, and A. Gaskov. Impedance spectroscopyof ultrafine-grain SnO2 ceramics with a variable grain size // Semiconductors. - 2006. - 40(1). - 104107.87. М. Шейнкман,А. Шик. Долговременные релаксации и остаточная проводимость вполупроводниках // ФТП. - 1976. - т . 10. - с . 209.88. M.
Green. The nature of quantum dot capping ligands. // J. Mater. Chem. - 2010. - 20. - 57975809.89. P. Brown, D. Kim, R. Lunt, N. Zhao, M. Bawendi, J. Grossman, and V. Bulovi. Energy LevelModification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange. // ACS Nano. 2014. - 8 (6). - pp 5863–5872.90. S. Kim, K. Kyhm and H.
Yang. Optical Properties and Surface Conditions of CdSe Quantum Dots.// J. of Phys. Soc. – 2006. - Vol. 49. - pp. 688 - 691.91. L. Liu , Q. Peng and Y. Li. An Effective Oxidation Route to Blue Emission CdSe Quantum Dots. //Inorg. Chem. - 2008. - 47 (8). - pp 3182–3187.92. K. Drozdov, V. Kochnev, A. Dobrovolsky, R. Vasiliev, A. Babynina, M.