Диссертация (1103678), страница 23
Текст из файла (страница 23)
– P. 12–48.22.Evans E.A., Fung Y.C. Improved measurements of the erythrocyte geometry // Microvasc. Res. – 1972. – V. 4. – P. 335–347.23.Hochmuth R.M., Mohandas N. Uniaxial loading of the red cell membrane // J. Biomech. – 1972. – V. 5. – P. 501–509.24.Evans E.A. A new material concept for the red cell membrane // Biophys. J. – 1973.– V. 13. – P. 926–940.25. Skalak R. Modelling the mechanical behavior of red blood cells // Biorheology J. –1973. – V. 10. – P. 229–238.26.
Evans E.A. New membrane concept applied to the analysis of fluid shear- andmicropipette-deformed red blood cells // Biophys. J. – 1973. –V. 13. – P. 941–954.27. Evans E.A., Waugh R., Melnik L. Elastic area compressibility modulus of red cellmembrane // Biophys. J.
– 1976. – V. 16. – P. 585–595.28. Hochmuth R.M., Mohandas N., Blackshear P.L. Measurement of the elasticmodulus for red membrane using a fluid mechanical technique // Biophys. J. – 1973.– V. 13. – P. 747–762.29. Грин А., Адкинс Дж. Большие упругие деформации и нелинейная механикасплошной среды: Пер.
с англ. – М.: Мир, 1965. – 156 с.13830. Fung Y.C. Theoretical considerations of the elasticity of red cells and small bloodvessels // Fed. Proc. Fed. Amer. Soc. Exp. Biol – 1966. – V. 25. – P. 1761–1762.31. Zarda P.R., Chien S., Skalak R. Elastic deformations of red blood cells // J. Biomech. – 1977. – V. 10. – P. 211–221.32. Evans E.A. Bending resistance and chemically induced moments in membrane bilayers // Biophys. J. – 1974.
– V. 14. – P. 923–931.33. Evans E.A., Hochmuth R.M. Mechano-chemical properties of the membranes //Current Topics in Membranes and Transport. – 1978. – V. 10. – P. 1–12.34. Dueling H.J., Helfrich W. Red blood cell shapes as explained on the basis of curvature elasticity // Biophys. J. – 1976. – V.
16. – P. 861–868.35. Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments //Z. Naturforsch., – 1973. – V. 28. – P. 693–703.36. Helfrich W. Blocked lipid exchange in bilayers and its possible influence on theshape of vesicles// Z.Naturforsch., – 1974. – V. 29. – P. 510–515.37. Evans E.A. Mechanical calorimetry of red cell membrane // Biorheology. J. – 1979.– V.
16. – P. 279–283.38. Evans E.A., Waugh R. Mechano-chemistry of closed, vesicular membrane systems//J. Colloid Interface Sci. – 1977. – V. 60. – P. 286–298.39. Chien S., Usami S., Taylor H. M ., Lundberg J. L., Gregersen M.I. Effects of hematocrit and plasma proteins on human blood rheology at low shear rates// J. Appl.Physiol. – 1966. – V. 21. – P. 81–87.40. Cokelet G. R., Meiselman H. J. Rheological comparison of hemoglobin solutionsand erythrocyte suspension // Science. – 1968. – V.
21. – P. 275–277.41. Evans, E. A., Hochmuth, R. Membrane viscoelasticity // Biophys. J. – 1973. – V.16. – P. 1–11.42. Chien S., Sung P. K.-L., Skalak R., Usami S., Tiizeren A. Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane // Biophys. J. –1978. – V. 24. – P. 463–482.43. Кошелев В.Б., Максимов Г.В., Приезжев А.В., Соколова И.А.Реологическиесвойства крови при острых экспериментальных нарушениях церебральной ге-139модинамики // Cовременные проблемы биомеханики. – 2006. – № 11. – С.
94–100.44. Fahraeus, R., Lindqvist, T. The viscosity of the blood in narrow capillary tubes //Am. J. Physiol. – 1931. – V. 96. – P. 562–568.45. Chien, S., Usami, S., Skalak, R. Blood flow in small tubes. In Handbook of Physiology: The Cardiovascular System IV, ed. E. M. Renkin, C. C. Michel, Bethesda,Md: Am. Physiol. Soc., 1984. – P.
217-249.46. Lipowsky, H. H. Network hemodynamics and the shear rate dependency of bloodviscosity. In Microvascular Networks: Experimental and Theoretical Studies, ed. A.S. Popel, P. C. JohnsonNew York: Karger, 1986. – P. 182−96.47. Goldsmith, H. L., Marlow, J. C. Flow behavior of erythrocytes. I. Rotation and deformation in dilute suspensions // Proc.
R. Soc. London Ser. B. – 1972. – V. 82. – P.1–84.48. Bretherton, F. P. Principles and techniques for assessing erythrocyte deformation //J. Fluid Mech. – 1961. – V. 10. – P. 166–168.49. Lighthill, M. J. Pressure-forcing of tightly fitting pellets along fluid-filled elastictubes // J. Fluid Mech.
– 1968. – V. 34. – P. 113–143.50. Barnard A.C., Lopez L., Hellums J.D. , Basic theory of blood flow in capillaries //Microvasc. Res. – 1968. – V.1. – P. 23–34.51. Lin K. L., Lopez L., Hellums J. D. Blood flow in capillaries // Microvasc. Res. –1973. – V. 5. – P.
7–19.52. Secomb T. W. and Gross J. F. Flow of red blood cells in narrow capillaries: role ofmembrane tension// Int. J. Microcirc. Clin. Exp. – 1983. – V. 2. – P. 229–240.53. Secomb T. W., Skalak R., Ozkaya N., Gross, J. F. Flow of axisymmetric red bloodcells in narrow capillaries // J. Fluid Mech. – 1986. – V. 163.
– P. 405–423.54. Skalak, R. Blood rheology, Mathematical Aspects of Physiology. Hoppensteadt, F.C., ed. American Mathematical Society, Providence, RI, 1981. – P. 109–139.55. Zarda P. R., Chien S., Skalak R. Interaction of viscous incompressible fluid with anelastic body, Computational Methods for Fluid-Solid Interaction Problems, American Society of Mechanical Engineers, New York, 1977. – P. 65–82.14056. Secomb T.
W. Flow-dependent rheological properties of blood in capillaries // Microvasc. Res. – 1987. – V. 34. – P. 46–58.57. Secomb T.W. Red Blood Cell Mechanics and Capillary Blood Rheology //Cell Biophysics. –1992. – V. 34. – P. 233–251.58. Secomb T.W., Hsu R., Pries A.R. A model for red blood cell motion in glycocalyx-lined capillaries // Am J Physiol Heart Circ Physiol –1998. – V. 274. – P.
1016–1022.59. Secomb T.W., Hsu R., Pries A.R. Motion of red blood cells in a capillary with anendothelial surface layer: effect of flow velocity // Am. J. Physiol. Heart CircPhysiol. – 2001. – V. 281. – P. 629–636,60. Pozrikidis C. Numerical simulation of the flow-induced deformation of red bloodcells // Annals of Biomedical Engineering. – 2003.
– V. 31. – P. 1194–1205.61. A. R. Pries, D. Neuhaus, P. Gaetgens. Blood viscosity in tube flow: Dependence ondiameter and hematocrit // Am. J. Physiol. – 1992. – V. 263. – P. 1779–1789.62. Pozrikidis C. Axisymmetric motion of a file of red blood cells through capillaries //Physics of Fluids. – 2005.
– V. 17. – P. 165–178.63. M. Abkarian, M. Faivre, A. Viallat, H. A. Stone. Red blood cell dynamics, deformation and rheology via microfluidic experiments. Mechanics of 21st Century –XXI ICTAM. Warsaw, Poland. 2004. – P. 15–21.64. Eggleton C.D. and Popel A.S. Large deformation of red blood cell ghosts in a simple shear flow // Physics of Fluids.
– 1998. – V. 10. – P. 1834–1845.65. Pozrikidis C. Numerical simulation of cell motion in tube flow // Annals of Biomedical Engineering. – 2005. – V. 33 – P. 165–178.66. Doddi S.K. and Bagchi P. Three-dimensional computational modeling of multipledeformable cells flowing in microvessels // Physical Review. – 2009. – V. 79. – P.46318–46322.67. Dupin M.M., Halliday I., Care C.M., Alboul L. and Munn L.L. Modeling the flowof dense suspensions of deformable particles in three dimensions // Phys. Rev. E.Stat. Nonlin.
Soft. Matter Phys. – 2007. – V. 75. – P. 66707–66755.14168. Dzwinel W., Boryczko K. and Yuen D.A. A discrete-particle model of blood dynamics in capillary vessels // Journal of Colloid and Interface Science. – 2003. – V.258. – P. 163–173.69. Liu Y.L. and Liu W.K. Rheology of red blood cell aggregation by computer simulation // Journal of Computational Physics.
– 2006. – V. 220. – P. 139–154.70. Barber J.O. Сomputational simulation of red blood cell motion in microvascularflows: Diss. … doctor of philosophy: 06.25.09/ Jared Barber. – The University ofArisona Graduate College, 2009. –126 p.71. Secomb T.W, Barber J.O., Restrepo J.M. Computational Simulation of red bloodcell motion in microvessel bifurcations.Seventh International Conference on CFD inthe Minerals and Process Industries CSIRO, Melbourne, Australia 9-11 December,2009 – 4 p.72.
Waugh R., Evans E.A. Thermoelasticity of red blood cell membrane// Biophys.J.,1979. – V. 26. – P. 115–132.73. Evans E., Mohandas N., Leung A. Static and dynamic rigidies of normal and sickleerythrocytes. Major influence of cell hemoglobin concentration // J. Clin. Invest. –1984. – V. 73. – P. 477–488.74. Кuross S.A., Rank B.H., Hebbel R.P. Excess heme in sickle erythrocyte inside-outmembranes: Possible role in thiol oxidation // Blood. – 1988. – V. 71.
– P. 876–882.75. Evans E.A. Bending elastic modulus of red blood cell membrane derived frombuckling instability in micropipet aspiration tests // Biophys. J. – 1983. – V. 43. –P. 27–30.76. Evans E.A., Waugh R. Osmotic correction to elastic area compressibility measurements on red cell membrane // Biophys. J. – 1977. – V. 20. – P. 307.77. Hochmuth R.M. Micropipette aspiration of living cells// J. of Biomech. – 2000. –V.
















