Диссертация (1103678), страница 24
Текст из файла (страница 24)
33. – P. 15–22.78. Singer S.J., Nicholson G.L. The fluid mosaic model of the structure of red cellmembranes // Science (Wash. DC). – 1977. – V. 175. – P. 720–731.14279. Kwok R., Evans E. Thermoelasticity of large lecithin bilayer vesiles // Biophys. J. –1981. – V. 35. – P. 637–652.80. Waugh R.E. Effects of inherited membrane abnormalities on the viscoelastic properties of erythrocyte membrane // Biophys. J. – 1987.
– V. 51. – P. 363–369.81. Takakuwa Y., Tchernia G., Rossi M., Benabadji M., Mohandas N. Restoration ofnormal membrane stability to unstable protein 4.1-deficient erythrocyte membranesby incorporation of purified protein 4.1 // J. Clin. Invest. – 1986. – V. 78. – P. 80–85.82. Dahl K. N., Westhoff C. M, Disher D. E. Fractional attachment of CD47 (IAP) tothe erythrocyte cytoskeleton and visual colocalization with Rh protein complexes //Blood. – 2003. – V.
101. – P. 1194–1199.83. Cho M.R., Knowless D.W., Smith B.L., Moulds J.J., Agre P.M, Mohandas N., Golan D. E. Membran dynamics of the water transport protein aquaporin-1 in intacthuman red cell // Biophys. J. – 1999. – V. 76. – P. 1136–1144.84. Zhu Q., Asaro R.J. Spectrin folding versus unfolding reactions and RBC membranestiffness // Biophys. J. – 2008. – V.
94. – P. 2529–2545.85. Boal D. H. Computer simulation of a model network for the erythrocyte cytoskeleton // Biophys. J. – 1994. – V. 67. – P. 521–529.86. Hansen J.C., Skalak R., Chien S., Hoger A. Influence of the network topology onthe elasticity of the red blood cell membrane skeleton // Biophys.
J. – 1997. – V.72. – P. 2369–2381.87. Leonard G., Henon S., Richert A., Simeon J., Gallet F. Direct measurment of thearea expansion and shear moduli of the human red blood cell membrane skeleton //Biophys. J. – 2001. – V. 81. – P. 43–56.88. Маклыгин А.Ю., Приезжев А.В., Карменян А. В., Никитин С.Ю., ОболенскийИ.С., Луговцов А.Е., Кисун Ли. Измерение силы взаимодействия между эритроцитами в агрегате с помощью лазерного пинцета//Квантовая электроника –2012. – V. 42. – P. 500–504.89.
Lin Y.C., Tsai L.W., Perevedentseva E., Chang H.H., Lin C.H., Sun D.S.,Lugovtsov A.E., Priezzhev A., Mona J., Chenga C.L. The influence of nanodiamond143on the oxygenation states and micro rheological properties of human red blood cellsin vitro // J. of Biomedical Optics – 2012. – V. 17. – P.
1–9.90. Коренченко А.Е., Бескачко В.П. Определение модуля сдвига воды в экспери-ментах с плавающим диском// Прикладная механика и техническая физика. –2008. –Т. 49. – С. 100–103.91. Thurston G. B., Gaertner E. B. Viscoelasticity of electrorheological fluids duringoscillatory flow in a rectangular channel // J. Rheol. – 1991. – V. 35.
– P. 1327–1343.92. Папков С.П. Студнеобразное состояние полимеров. М.: Химия, 1974. –256c.93. Dean J., Schechter A.N. Sickle-cell anemia: Molecular and cellular bases of therapeutic approaches // N. Engl. J. Med. – 1978. – V. 299. – P. 752–763.94. Eaton W.A., Hofrichter J. Hemoglobin S gelation and sickle cell disease // Blood. –1987. – V. 70. – P. 1245–1266.95. Нebbel R.P. Beyond hemoglobin polymerization: the red blood cell membrane andsickle disease pathophysiology // Blood.
– 1991. – V. 77. – P. 214–237.96. Kuross S.A., Rank B.H., Hebbel R.P. Excess heme in sickle erythrocyte inside-outmembranes: Possible role in thiol oxidation // Blood. – 1988. – V. 71. – P. 876–882.97. Evans E., Mohandas N., Leung A.. Static and dynamic rigidies of normal andsickle erythrocytes. Major influence of cell hemoglobin concentration // J.Clin.Invest. – 1984. – V. 73. – P.
477–488.98. Mackie L.H., Hochmuth R.M. The influence of oxygen tension, temperature, andhemoglobin concentration on the rheologic properties of sickle erythrocytes // Blood.– 1990. – V. 76. – P. 1256–1261.99. Lew V.L., Raftos J.E., Sorette M., Bookchin R.M., Mohandas N. Generation ofnormal human red cell volume, hemoglobin content, and membrane area distributions by ‘birth’ or regulation? // Blood. – 1995. – V. 86. – P.
334–341.100. Pappenheimer J.R. Uber die permeabilitat der glomerulummembranen in derNiere // Klin. Wschr. – 1935. – V. 33. – P. 362–365.101. Атауллаханов Ф.И., Витвицкий В.М., Кияткин А.Б., Пичугин А.В. Регуляцияобъема эритроцита человека. Роль активируемых кальцием калиевых каналов //144Биофизика. – 1993.
– Т. 38. – С. 809–821.102. Атауллаханов Ф.И., Витвицкий В.М., Комарова С.В., Мошаров Е.В. Энерго-зависимые процессы и метаболизм аденилатов в эритроцитах человека // Биохимия . – 1996. – Т. 61. – C. 266–274.103. Beutler E. Red Cell Metabolism: A manual of biochemical methods. Grune &Stratton, Orlando, 1984. – 208 p.104. Jacobash G.S., Minakami S., Rapoport S.M. In: Cellular and Molecular Biology ofErythrocytes (Yoshikawa J. & Rapoport S.M., eds). University of Tokyo Press, Tokyo, 1974. –55 р.105. Lisovskaya I.L., Shurkhina E.S., Nesterenko V.M., Rozenberg J.M., AtaullakhanovF.I. Determination of the content of nonfilterable cells in erythrocyte suspensionsas a function of the medium osmolality // Biorheology. – 1998.
– V. 35. – P. 141–153.106. Котык А., Янычек К. Мембранный транспорт. М.: Мир, 1980. – 338с.107. Duhm J., Gobel B.O. Role of the furosemide-sensitive Na+/K+ transport system indetermining the steady-state Na+ and K+ content and volume of human erythrocytes in vitro and in vivo // J. Membr. Biol. – 1984.
– V. 77. – P. 243–254.108. Lauf P.K, Bauer J., Adragna N.C., Fujise H., Zade-Oppen A.M., Ryu K.H., DelpireE. Erythrocyte K-Cl cotransport: properties and regulation // Am. J. Physiol. –1992. – V. 263. – P. 917–932.109. Skou J.C. The influence of some cations on an adenosine triphosphatase from peripheral nerves // Biochim.
et biophys. acta. – 1957. – V. 23. – P. 394–401.110. Mohandas N., Chasis J.A., Shohet S.B. The influence ofmembrane skeleton on redcell deformability, membrane material properties, and shape // Semin. Hematol. –1983. – V. 20. – P. 225–242.111. Jakobsson E. Interactions of cell volume, membrane potential, and membranetransport parameters // Am. J. Physiol.
– 1980. – V. 238. – P. 196 – 206.112. Атауллаханов Ф.И. Регуляция метаболизма в эритроцитах: дис. …д-ра физ.-мат. наук: 03.00.02/ Атауллаханов Фазоил Иноятович.– Пущино, 1983. – 296 с.113. Martinov M.V., Vitvitsky V.M., Ataullakhanov F.I. Volume stabilization in human145erythrocytes: combined effects of Ca2+-dependent potassium channels and adenylatemetabolism // Biophys. Chem. – 1999. – V. 80.
– P. 199–215.114. Атауллаханов Ф.И., Корунова Н.О., Спиридонов И.С., Пивоваров И.О.,Калягина Н.В., Мартынов М.В. Как регулируется объем эритроцита, или чтомогут и чего не могут математические модели в биологии // Биол. мембраны. –2009.
– Т. 26. – P. 163–179.115. Freedman J., Hoffman J.H. Ionic and osmotic equilibria of human red cells treatedwith nystatin // J. Gen. Physiol. – 1979. – V. 74, – P. 157–185.116. Ross P.D., Minton A.P. Hard quasispherical model for the viscosity of hemoglobinsolutions // Biochem. Biophys. Res. Commun. – 1977. – V. 76. – P. 971–976.117.
Tosteson D.C. Halide transport in red blood cells // Acta Physiol. Scand. – 1959. –V. 46. – P. 19–41.118. Tosteson D.C. , Hoffman J.F. Regulation of cell volume by active cation transportin high and low potassium sheep red cells // J. Gen. Physiol. – 1960. – V. 44. – P.169–194.119. Brahm J. Diffusional water permeability of human erythrocytes and their ghosts //J. Gen.
Physiol. – 1982. – V. 79. – P. 791–819.120. Knauf P.A., Fuhrmann G.F., Rothstein S., Rothstein A. The relationship betweenanion exchange and net anion flow across the human red blood cell membrane // J.Gen. Physiol. – 1977. – V. 69. – P. 363–386.121.
Raftos J.E., Lew V.L. Effect of intracellular magnesium on calcium extrusion bythe plasma membrane calcium pump of intact human red cells // J. Physiol. – 1995. –V. 489. – P. 63–72.122. Rothstein A., Cabantchik Z.I., Knauf P. Mechanism of anion transport in red bloodcells: role of membrane proteins // Fed. Proc. – 1976. – V. 35.
– P. 3–10.123. Cabantchik Z.I., Knauf P.A., Rothstein A. The anion transport system of the redblood cell. The role of membrane protein evaluated by the use of 'probes' // Biochim.et biophys. acta. – 1978. – V. 515. – P. 239–302.124. Антонов В.Ф., Черныш А.М., Пасечник В.И. Биофизика: учебник для вузов.– М.: ВЛАДОС, 2006. – 287 с.146125. Finkelstein A. Water movement through lipid bilayers, pores, and plasmamembranes: theory and reality. – N.Y.: Wiley, 1987. – 128 с.126. Huang W., Zhang Z., Han X., Tang J., Wang J., Dong S., Wang E.
Ion channelbehavior of amphotericin B in sterol-free and cholesterol- or ergosterol-containingsupportedphosphatidylcholinebilayermodelmembranesinvestigatedbyelectrochemistry and spectroscopy // Biophys. J. – 2002. – V. 83. – P. 3245–3255.127. Kruijff B., Demel R.A. Polyene antibiotic-sterol interactions in membranes ofAcholeplasma laidlawii cells and lecithin liposomes. 3. Molecular structure of thepolyene antibiotic-cholesterol complexes // Biochim.
Biophys. Acta. – 1974. – V.83. – P. 57–70.128. Finkelstein A., Holz R. 1973. Aqueous pores created in thin lipid membranes bythe polyene antibiotics nystatin and amphotericin B // Membranes. – 1973. – V. 2. –P. 377–408.129. Поцелуев В.М. Свойства ионных каналов, образуемых амфотерицином влипидном бислое с холестерином: дис. … канд. физ.-мат. наук.: 03.00.02/Поцелуев Виктор Михайлович. – Пущино, 1978.
















