Диссертация (1102364), страница 22
Текст из файла (страница 22)
ñäâèã ÷àñòîòû ìîäû j ïîä äåéñòâèåì k1Ãëàâà 3Xkèíòåãðàë ïåðåêðûòèÿ ìîäû k ñ íàêà÷êîé1Ãëàâà 3∆kîòñòðîéêà íàêà÷êè îò ÷àñòîòû ìîäûðàä/ñÃëàâà 3bkàìïëèòóäà êîëåáàíèé k -ìîäû íà ÷àñòîòå íàêà÷êèÂ/ìÃëàâà 3a±kàìïëèòóäà êîëåáàíèé k -ìîäû íà ÷àñòîòå ω ± ωRFÂ/ìÃëàâà 3rijkýëåêòðîîïòè÷åñêèé òåíçîð(Â/ì)−1ÂåçäåDýëåêòðè÷åñêîå ñìåùåíèåÀ·ñ/ì2Âåçäåϕàçèìóòàëüíûé óãîëðàä.Ãëàâà 3lϕóãëîâàÿ äëèíà ìèêðîïîëîñêà1Ãëàâà 3wøèðèíà ìèêðîïîëîñêàìÃëàâà 3tòîëùèíà ìèêðîïîëîñêàìÃëàâà 3hòîëùèíà ÌÌØÃ (îíà æå ïîäëîæêà ìèêðîïîëîñêà)ìÃëàâà 3eräèýëåêòðè÷åñêàÿ ïðîíèöàåìîñòü ÌÌØÃ (íà ÑÂ×)1Ãëàâà 3sδkjýôôåêòèâíîñòü ÷àñòîòíîé ìîäóëÿöèèÄæ−1/2Ãëàâà 3g0kjòåìï ñâÿçè ñ âàêóóìîìðàä/ñÃëàâà 3Pmin÷óâñòâèòåëüíîñòü ïî îáíàðóæèìîé ìîùíîñòèÂòÃëàâà 3UπÏîëóâîëíîâîå íàïðÿæåíèåÂÃëàâà 3Qäîáðîòíîñòü1Ãëàâà 3σRïðîâîäèìîñòüÎì−1Ãëàâà 3119Ñïèñîê îïóáëèêîâàííûõ ñòàòåéA1.
Pavlov N. G., Kondratyev N. M., Gorodetsky M. L. Modeling the whispering gallerymicroresonator-based optical modulator // Appl. Opt. 2015. Vol. 54, No. 35. P. 1046010466.A2. Kondratiev N. M., Braginsky V. B., Vyatchanin S. P., Gorodetsky M. L. Spontaneous crystallization noise in mirrors of gravitational wave detectors // Phys. Rev. D.
2015. Vol. 92.P. 041101.A3. Herr T., Brasch V., ... Kondratiev N,... et al. Temporal solitons in optical microresonators //Nature Photonics. 2014. Vol. 8, No. 2. P. 145152.A4. Kondratiev N. M., Gurkovsky A. G., Gorodetsky M. L. Thermal noise and coating optimization in multilayer dielectric mirrors // Phys. Rev. D. 2011. Vol. 84. P.
022001.A5. Êîíäðàòüåâ Í. Ì., Ãîðîäåöêèé Ì. Ë. Ýëåêòðîîïòè÷åñêîå âçàèìîäåéñòâèå â ðåçîíàòîðàõñ ìîäàìè øåï÷óùåé ãàëåðåè è èõ ïðèëîæåíèå â ÑÂ×-ðåçîíàòîðàõ // Èçâåñòèÿ ÐÀÍ.Ñåðèÿ ôèçè÷åñêàÿ. 2013. Ò. 77, 12. Ñ. 17401743.A6. Êîíäðàòüåâ Í. Ì., Ãîðîäåöêèé Ì. Ë. ÑÂ× ïðèåìíèêè è ìîäóëÿòîðû íà îñíîâå ðåçîíàòîðîâ ñ ìîäàìè øåï÷óùåé ãàëåðåè // Ó×ÅÍÛÅ ÇÀÏÈÑÊÈ ÔÈÇÈ×ÅÑÊÎÃÎ ÔÀÊÓËÜÒÅÒÀ ÌÎÑÊÎÂÑÊÎÃÎ ÓÍÈÂÅÐÑÈÒÅÒÀ. 2013. Ò. 5, 7.
Ñ. 5659.A7. Êîíäðàòüåâ Í. Ì., Ãîðîäåöêèé Ì. Ë. Ýëåêòðîîïòè÷åñêîå âçàèìîäåéñòâèå â ðåçîíàòîðàõñ ìîäàìè øåï÷óùåé ãàëåðåè è ÑÂ× ìîäóëÿòîðû íà åãî îñíîâå // Æóðíàë ðàäèîýëåêòðîíèêè (ýëåêòðîííûé æóðíàë). 2012. 11.Ëèòåðàòóðà1.B. P. Abbott et. al. LIGO: the Laser Interferometer Gravitational-Wave Observatory //Reports on Progress in Physics. 2009. Vol. 72, No. 7. P. 076901.2.Harry G.
M., The LIGO Scientic Collaboration. Advanced LIGO: the next generation ofgravitational wave detectors // Classical and Quantum Gravity. 2010. Vol. 27, No. 8.P. 084006.3.The LIGO Scientic Collaboration, Aasi J., et.al. B. P. A. Advanced LIGO // Classical andQuantum Gravity. 2015. Vol. 32, No.
7. P. 074001.1204.Gorodetsky M. L. Thermal noises and noise compensation in high-reection multilayer coating // Physics Letters A. 2008. Vol. 372, No. 46. P. 6813 6822.5.Ãîðîäåöêèé,Ì.Ë.Îïòè÷åñêèåìèêðîðåçîíàòîðûñãèãàíòñêîéäîáðîòíîñòüþ.Ôóíäàìåíòàëüíàÿ è ïðèêëàäíàÿ ôèçèêà. Ôèçìàòëèò. 2011. ISBN: 9785922112833.6.Ilchenko V. S., Yao X. S., Maleki L., Lute Y. Microsphere Integration in Active and PassivePhotonics Devices // Proc. SPIE. 2000.
Vol. 3930.7.Ilchenko V. S., Maleki L. Novel whispering-gallery resonators for lasers, modulators, andsensors // Proc. SPIE. 2001. Vol. 4270. P. 120130.8.Ilchenko V. S., Matsko A. B., Savchenkov A. A., Maleki L. High-eciency microwave andmillimeter-wave electro-optical modulation with whispering-gallery resonators // Proc. SPIE.2002. Vol.
4629. P. 158163.9.Herr T., Hartinger K., Riemensberger J. et al. Universal formation dynamics and noise ofKerr-frequency combs in microresonators // Nature Photonics. 2012. Vol. 6, No. 7. P. 480487.10.Hulse R. A., Taylor J. H. Discovery of a pulsar in a binary system // Astrophysical Journal.1975. Vol. 195. P. L51L53.11.Weisberg J. M., Taylor J. H. The Relativistic Binary Pulsar B1913+16: Thirty Years ofObservations and Analysis // Binary Radio Pulsars / Ed.
by F. A. Rasio, I. H. Stairs.Vol. 328 of Astronomical Society of the Pacic Conference Series. 2005. P. 25.12.Ãåðöåíøòåéí, M.E., Ïóñòîâîéò, Â. È. Ê âîïðîñó îá îáíàðóæåíèè ãðàâèòàöèîííûõ âîëíìàëûõ ÷àñòîò // ÆÝÒÔ. 1962. Vol. 43. P. 605607.13.Ë. Ä. Ëàíäàó, Å. Ì. Ëèôøèö. Òåîðåòè÷åñêàÿ ôèçèêà òîì 7. Òåîðèÿ óïðóãîñòè. Íàóêà.1987.14.Harry G. M., Armandula H., Black E. et al. Thermal noise from optical coatings in gravitational wave detectors // Appl. Opt. 2006. Vol. 45, No. 7. P. 15691574.15.Braginsky V., Gorodetsky M., Vyatchanin S. Thermodynamical uctuations and photothermal shot noise in gravitational wave antennae // Physics Letters A.
1999. Vol. 264,No. 1. P. 1 10.12116.Braginsky V., Vyatchanin S. Thermodynamical uctuations in optical mirror coatings //Physics Letters A. 2003. Vol. 312, No. 34. P. 244 255.17.Braginsky V., Gorodetsky M., Vyatchanin S. Thermo-refractive noise in gravitational waveantennae // Physics Letters A. 2000. Vol. 271, No. 56.
P. 303 307.18.Levin Y. Internal thermal noise in the LIGO test masses: A direct approach // Phys. Rev.D. 1998. Vol. 57. P. 659663.19.Harry G. M., Gretarsson A. M., Saulson P. R. et al. Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings // Classical and Quantum Gravity.2002. Vol. 19, No. 5.
P. 897.20.G. M. Harry, M. R. Abernathy et al. Titania-doped tantala/silica coatings for gravitationalwave detection // Clas. and Quant. Grav. 2007. Vol. 24, No. 405.21.A. E. Villar et al. Measurement of thermal noise in multilayer coatings with optimized layerthickness // Phys. Rev. D. 2010. Vol. 81, No. 12.22.M. M. Fejer, S. Rowan et al. Thermoelastic dissipation in inhomogeneous media: loss measurements and displacement noise in coated test masses for interferometric gravitational wavedetectors // Phys. Letts. A.
2004. Vol. 70, No. 82003.23.Wanser K. H. Fundamental phase noise limit in optical bres due to temeperature uctuations // Electron. Letts. 1998. Vol. 28, No. 53.24.Knudsen S., Tveten A. B., Dandridge A. Measurements of fundamental thermal inducedphase uctuations in the ber of a Sagnac interferometer // Photonics Technology Letts.1995. Vol. IEEE 7, No. 90.25.Gorodetsky M.
L., Grudinin I. S. Fundamental thermal uctuations in microspheres // J.Opt. Soc. Am. B. 2004. Vol. 21, No. 4. P. 697705.26.S.-C. Wu, Z.-Z. Wan, et al. Photothermal shot noise in end mirrors of LIGO due to Correlationof power uctuations // Chin.Phys.Lett. 2006. Vol. 23, No. 3173.27.van Vliet K. M., Menta H. Theory of transport noise in semiconductors // Phys. Stat. Solidi.1981. Vol. B106, No. 11.28.van Vliet K. M., van der Ziel A., Scmidt R. R.
Temperature uctuation noise of thin lmssupported by a substrate // J.Appl. Phys. 1980. Vol. 51, No. 2947.12229.Liu Y. T., Thorne K. S. Thermoelastic noise and homogeneous thermal noise in nite sizedgravitational-wave test masses // Phys. Rev. D. 2000. Vol. 62, No. 122002.30.M. Cerdonio, L. Conti et al. Thermoelastic eects at low temperatures and quantum limitsin displacement measurement // Phys. Rev. D. 2003. Vol. 63, No.
082003.31.Áàëàêøèé ., Ïàðûãèí ., ×èðêîâ . Ôèçè÷åñêèå îñíîâû àêóñòîîïòèêè. Ðàäèî è ñâÿçü.1985.32.Wille D. A., Hamilton M. C. Acousto-optic deection in Ta2 O5 waveguides // Appl. Phys.Letts. 1974. Vol. 24. P. 159.33.Weis R., Gaylord T. Lithium niobate: Summary of physical properties and crystal structure // Applied Physics A. 1985. Vol.
37, No. 4. P. 191203.34.Berthold J. W., Jacobs S. F., Norton M. A. Dimensional Stability of Fused Silica, Invar, andSeveral Ultra-low Thermal Expansion Materials // Metrologia. 1977. Vol. 13, No. 1. P. 9.35.Levin Y. Creep events and creep noise in gravitational-wave interferometers: Basic formalismand stationary limit // Phys. Rev. D.
2012. Vol. 86. P. 122004.36.Benthem B., Levin Y. Thermorefractive and thermochemical noise in the beamsplitter of theGEO600 gravitational-wave interferometer // Phys. Rev. D. 2009. Vol. 80. P. 062004.37.Gurkovsky A., Vyatchanin S. The thermal noise in multilayer coating // Physics Letters A.2010. Vol. 374, No. 33. P. 3267 3274.38.The LIGO Scientic Collaboration.
Gravitational Wave Interferometer Noise Calculator(GWINC). https://awiki.ligo-wa.caltech.edu/aLIGO/GWINC.39.Ë. Ä. Ëàíäàó, Å. Ì. Ëèôøèö. Òåîðåòè÷åñêàÿ ôèçèêà òîì 5. Ñòàòèñòè÷åñêàÿ ôèçèêà÷àñòü 1. Íàóêà. 1976.40.Kimble H. J., Lev B. L., Ye J. Optical Interferometers with Reduced Sensitivity to ThermalNoise // Phys.











