Неравновесные состояния и гистерезис сорбции-десорбции водорода в водородаккумулирующих материалах (1098242), страница 36
Текст из файла (страница 36)
Показано, что механохимическая обработка исходногосоединения с добавками катализатора диссоциативной хемосорбции водорода икарбонизированногосвязующегообеспечиваетсущественноеувеличениеводородсорбционной способности в области высоких давлений при сохранении полнойобратимости взаимодействия.9. Проведено исследование взаимодействия в системе H2O-H2 и тройных системахна ее основе, дополнительно содержащих компоненты, стабилизирующие гидратные фазы.Показано, что для бинарной системы гистерезис фазового перехода лед Ih↔клатратныйгидрат sII связан с выраженным объемным эффектом (до 15%), а в случае превращенияL↔sII - с механизмом формирования зародышей клатратной фазы в жидкости. В системахН2О-ТГФ-Н2 и Н2О-1,4-диоксан-Н2 в области давлений выше 1000 бар обнаруженонестабильное сверхнасыщенное водородом состояние, которое отвечает частичномудвойному заполнению молекулами Н2 пентагональных полостей-додекаэдров (512) вклатратном каркасе.2167. Список литературы1.
Козлов С.И., Фатеев В.Н. Водородная энергетика: современное состояние, проблемы,перспективы / М.: Газпром ВНИИГАЗ. 2009. 518 с.2. Schlapbach L., Zuttel A. Hydrogen-storage materials for mobile applications // Nature. 2001.V. 414. P. 353-358.3. Solid-state hydrogen storage.
Materials and chemistry. Ed. Walker G. / Woodhead PublishingLtd., Cambridge. 2008. 570 p.4. Handbook of hydrogen storage: new materials for future energy storage / Ed. Hirscher M.WILEY-VCH. 2010. 353 p.5. Broom D.P. Hydrogen storage materials. The characterisation of their storage properties //Springer-Verlag London Limited. 2011. 258 p.6. Hydrogen storage technology. Materials and applications / Ed. Klebanoff L. CRC Press. 2013.455 p.7. Murray L.J., Dinca M., Long J.R. Hydrogen storage in metal–organic frameworks // Chem.Soc. Rev. 2009. V.
38. P. 1294-1314.8. Hu Y.H., Zhang L. Hydrogen storage in metal–organic frameworks // Adv. Mater. 2010.V. 22. P. E117–E130.9. Furukawa H, Cordova K.E., O’Keeffe M., Yaghi O.M. The chemistry and applications ofmetal-organic frameworks // Science. 2013. V.341. P.123044 (1-12).10. US Department of Energy hydrogen and fuel cell program // www.hydrogen.energy.gov.11. Lototskyy M.V., Yartys V.A., Pollet B.G., Bowman R.C.
Metal hydride hydrogencompressors: a review // Int. J. Hydrogen Energy. 2014. V. 39. P. 5818-5851.12. Ewing J.A. Experimental researches in magnetism // Philosophical Transactions of theRoyal Society. 1885. V. 176. P. 523-640.13. Preisach P. Über die magnetische Nachwirkung // Zeitschrift für Physik. 1938. V. 94.P. 277-302.14. Krasnosel'skii M.A., Pokrovskii A.V.
Systems with hysteresis // Springer Verlag, Berlin Heidelberg - New York - London - Paris - Tokio. 1989. 410 p.15. Erber T., Guralnick S.A., Michels S.C. Hysteresis and Fatigue // Annals of Physics. 1993.V. 224. P. 157-192.21716. Staveley L.A.K. Transitions in solids and liquids // Quart. Rev. Chem. Soc. 1949. N 3.P. 65-81.17. Rao K.J., Rao C.N.R. Crystal structure transformations of alkali sulphates, nitrates andrelated substances: Thermal hysteresis in reversible transformations // J. Mat. Sci. 1966.V. 1.
Р. 238-248.18. Porter S.K. Hysteresis in solid-state reactions // J. Chem. Soc., Faraday Trans. 1983. V. 79.P. 2043-2053.19. Knittel D.R., Pack S.P., Lin S.H., Eyring L. A thermodynamic model of hysteresis in phasetransitions and its application to rare earth oxide systems // J. Chem. Phys. 1977.
V. 67.P. 134-142.20. Everett D.H., Whitton W.J. A general approach to hysteresis // Trans Faraday Soc. 1952.V. 48. P. 749-757.21. Everett D.H., Whitton W.J. A thermodynamic study of the adsorption of benzene vapour byactive charcoals // Proc. Roy. Soc. A. 1955. V 230. P. 91-110.22.
Braida W.J., Pignatello J.J., Lu Y., et al. Sorption hysteresis of benzene in charcoal particles// Environ. Sci. Technol. 2003. V. 37. P. 409-417.23. Flanagan T.B., Park C.-N. Hysteresis in metal hydrides // Mat. Sci. For. 1988. V. 31. P. 297323.24. Qian S., Northwood D.O. Hysteresis in metal-hydrogen systems: a critical review of theexperimental observations and theoretical models // Int.
J. Hydrogen Energy. 1988. V. 13.N 1. P. 25-35.25. Qian S., Northwood D.O. Elastic and plastic accommodation effects on hysteresis duringhydride formation and decomposition // Int. J. Hydrogen Energy. 1990. V. 15. N 9. P. 649654.26. Flanagan T.B., Park C.-N., Oates W.A. Hysteresis in solid state reactions // Progress in SolidState Chemistry.
1995. V. 23. P. 291-363.27. Ubbelohde A.R. Some properties of the metallic state. I. Metallic hydrogen and its alloys //Proc. R. Soc. Lond. A. 1937. V. 159. P. 295-306.28. Flanagan T.B., Noh H. A possible role for hydrogen-induced lattice migration in alloymaterials processing // J. Alloys Compounds. 1995. V. 31. P. 1-9.21829. Flanagan T.B., Bowerman B.S., Biehl G.E. Hysteresis in metal/hydrogen systems // ActaMetallurgica. 1980. V.
14. P. 443-447.30. Kodama T. Proposal for new indexes describing the degree of hysteresis and thoseapplications to the ZrMn2-H2 system // J. Alloys Compounds. 1998. V. 278. P. 194-200.31. Kodama T. The thermodynamic parameters for the LaNi5-xAlx-H2 and MmNi5-xAlx-H2systems // J. Alloys Compounds. 1999.
V. 289. P. 207-212.32. Binder K. Theory of first-order phase transitions // Rep. Prog. Phys. 1987. V. 50. Р. 783-859.33. Binder K, Vollmayr K., Deutsch H.P., et al. Monte Carlo methods for first order phasetransitions: some recent progress // Int. J. Mod.
Phys. C. 1992. V. 3. N 5. P. 1025-1058.34. Balasubramaniam R. The role of interfacial curvarture in the hysteresis in metal-hydrogensystems // Int. J. Hydrogen Energy. 1996. V. 21. N 2. P. 119-127.35. Baranowski B. A simplified quantitative approach to the isothermal hysteresis in metallichydrides with coherent interphases // J.
Alloys Compounds. 1993. V. 200. P. 87-92.36. Schwarz R.B., Khachaturyan A.G. Thermodynamics of open two-phase systems withcoherent interfaces // Phys. Rev. Lett. 1995. V. 74. N 13. P. 2523-2526.37. Schwarz R.B., Khachaturyan A.G.
Thermodynamics of open two-phase systems withcoherent interfaces: application to metal–hydrogen systems // Acta Mater. 2006. V. 54.P. 313-323.38. Lacher J.R. A Theoretical formula for the solubility of hydrogen in palladium // Proc. Roy.Soc. A. 1937. V. 161. P. 525-545.39. Evans M.J.B., Everett D.H. Thermodynamics of the solution of hydrogen and deuterium inpalladium // J. Less Common Met. 1976. V. 49. P.
123-145.40. Fujitani S., Nakamura H., Furukawa A., et al. A method for numerical expressions of P-Cisotherms of hydrogen-absorbing alloys // Z. Phys. Chem. 1993. V. 179. P. S27-S33.41. Zhou Z., Zhang J., Ge J., et al. Mathematical modeling of the PCT curve of hydrogenstorage alloys // Int. J. Hydrogen Energy. 1994. V.
19. N 3. P. 269-273.42. Fang S., Zhou Z., Zhang J., et al. Two mathematical models for the hydrogen storageproperties of AB2 type alloys // J. Alloy Compounds. 1999. V. 293–295. P. 10-1343. Fang S., Zhou Z., Zhang J., et al. The application of mathematical models to the calculationof selected hydrogen storage properties (formation enthalpy and hysteresis) of AB2-typealloys // Int. J. Hydrogen Energy. 2000. V. 25. P. 143-149.21944. Marinin V.S., Umerenkova K.R., Shmalko Yu.F., et al.
Interacting lattice gas model forhydrogen subsystem of metal hydrides // Functional materials. 2002. V. 9. N 3. P. 395-401.45. Marinin V.S., Umerenkova K.R., Shmalko Yu.F., et al. Critical separation point ofdisordered hydride phases in the model of interacting lattice gas // Functional materials.2002. V. 9. N 4. P. 609-616.46. Davidson D.J., Sai Raman S.S., Lototsky M.V., Srivastava O.N. On the computer simulationof the P-C isotherms of ZrFe2 type hydrogen storage materials // Int. J.
Hydrogen Energy.2003. V. 28. P. 1425-1431.47. Lototsky M.V., Yartys V.A., Marinin V.S., Lototsky N.M. Modelling of phase equilibria inmetal–hydrogen systems // J. Alloy Compounds. 2003. V. 356-357. P. 27–31.48. Singh R.K., Gupta B.K., Lototsky M.V., Srivastava O.N. On the synthesis andhydrogenation behaviour of MmNi5-xFex alloys and computer simulation of the P-C-Tcurves. systems // J. Alloy Compounds.
2004. V. 373. P. 208-213.49. Singh R.K., Lototsky M.V., Srivastava O.N. Thermodynamical, structural, hydrogen storageproperties and simulation studies of P–C isotherms of (La, Mm)Ni5-yFey // Int. J. HydrogenEnergy. 2007. V. 32. P. 2971-2976.50. Feng F., Geng M., Northwood D.O. Mathematical model for the plateau region of P–Cisotherms of hydrogen-absorbing alloys using hydrogen reaction kinetics // Comput.
Mater.Sci. 2002. V. 23. P. 291-299.51. Payá J., Linder M., Laurien E., Corberán J.M. Mathematical models for the P-C-Tcharacterization of hydrogen absorbing alloys // J. Alloy Compounds. 2009. V. 484. N 1-2.P. 190–195.52. Tatsumi K., Tanaka I., Inui H., et al. Atomic structures and energetics of LaNi5-H solidsolution and hydrides // Phys.