Лайонс Р. Цифровая обработка сигналов. Второе издание. Пер. с англ. (2006) (1095938), страница 2
Текст из файла (страница 2)
Интерполяция полосовых сигналов............. 13.15. Алгоритм локализации спектральных пиков....... 13.16. Вычисление поворачивающих множителей БПФ.... 13.17. Обнаружение отдельного тона . 13.18. Скользящее ДПФ . 13.19. Увеличение масштаба БПФ по частоте........... 13.20. Практическая реализация анализатора спектра...... .
411 412 418 421 429 430 437 438 444 445 460 465 467 475 479 482 483 494 497 497 503 507 509 511 512 514 515 518 520 524 532 535 Соде жение 13.21. Эффективная аппроксимация арктангенса....... 13.22. Алгоритмы демодуляции частотно-модулированных сигналов 13.23. Удаление постоянной составляющей............
13.24. Усовершенствование интеграторов-гребенчатых фильтров. 13.25. Сглаживание импульсного шума............. 13.26. Эффективное вычисление полиномов.......... 13.27. Проектирование КИХ-фильтров очень высокого порядка 13.28. Интерполяция во временной области с помощью БП 13.29. Перенос по частоте с помощью прореживания.... 13.30. Автоматическая регулировка усиления (АРУ).... 13.31. Оценка огибающей.
13.32. Квадратурный генератор .. 13.33. Двухрежимное усреднение, 538 540 543 546 551 553 554 Ф... 557 561 561 563 565 568 Приложение А. Арифметика комплексных чисел........ А.1. Графическое представление действительных и комплексных чисел А.2. Арифметическое представление комплексных чисел .. А.З.
Арифметические операции над комплексными числами А.4. Некоторые практические особенности использования комплексных чисел.. 573 573 574 576 580 Приложение В. Сумма геометрической прогрессии. . 583 .. 585 Приложение С. Инверсия времени и ДПФ . 589 589 592 593 596 Приложение Е. Децибелы (дБ и дБм)... Е.1. Использование логарифмов для сравнения мощности сигналов Е.2. Некоторые полезные числа, связанные с децибелами Е.З. Задание абсолютной мощности в децибелах......
. 597 . 597 .. 602 .. 603 Приложение Р. Среднее, дисперсия и стандартное отклонение П.1. Статистические параметры. О.2. Стандартное отклонение или'СКЗ непрерывного синусоидального сигнала Р.З. Среднее и дисперсия случайных функций......... Р.4. Нормальная функция плотности вероятности....... и оввя об вботкв сигналов Приложение С. Вывод соотношений для фильтров на основе частотной выборки .. С.1. Частотная характеристика гребенчатого фильтра .. С.2.
Частотная характеристика отдельного комплексного ФОЧВ.. С.З. ФЧХ многосекцнонного комплексного ФОЧВ.... СА. Частотная характеристика многосекцнонных комплексных ФОЧВ С.5. Передаточная функция действительного ФОЧВ... С.6. Частотная характеристика ФОЧВ Типа 1Ч...... 615 ..
615 616 .. 617 618 .. 620 .. 622 Приложение Н. Таблицы расчета фильтров на основе частотной выборки 625 Предметный указатель 641 Приложение Г. Терминология в области цифровой фильтрации .. 605 Я яосвящаю эту книгу моим дочерям Джулии и Мередит, я хотел бы быть с вами; моей матери Рут за то, что заставляла меня заканчивать домашние задания; моему отцу Гради, который не знал, за что взялся, когда построил тот верстак и подвале; моему брату Рею за то, что сделал всех нас лучше; моему брату Кену, который преуспел там, где я потерпел неудачу; моей сестре Нэнси, которая постоянно мешала нам; и опытным людям из телеконференции сотр.дуг сети Юзепе1, которые задают хорошие вопросы и дают наилучшие ответы.
И, наконец, Сайджи Иардула ~Ва~фф, без вашей поддержки эта книга не могла бы появиться на свет. Об авторе Ричард Лайонс (В!сЬагд 1.уопз) работает системным инженером-консультантом и преподавателем в Веззег Аззос(атез (организация, осуществляющая повышение квалификации и переподготовку специалистов в области беспроводной связи) в Маунтейн Вью (Моипгатп У1еч ), Калифорния.
Он получил степень бакалавра в области электротехники (ВЯЕŠ— ВасЬе!ог ог" Бс)епсе (п Е1есГНса! Епшпееппя) в Университете Акрона и прошел одногодичный курс дополнительных разделов математики для инженеров в университете Джона Хопкинса (в лаборатории прикладной физики), округ Колумбия. Лайонс был ведущим инженером-разработчиком множества систем обработки сигналов как для Агентства национальной безопасности (Ыаг!опа! Яеспйгу Аяепсу, Ь!БА), так и для компании ТКЖ 1пс. (теперь это корпорация Нортроп Грумман, ЫоггЬгор Оппшпап Согр.). В его обязанности входили: проектирование систем; разработка, тестирование и установка.
Он специализировался в области оценки качества алгоритмов обработки сигналов и тестирования систем. Как преподаватель в Веззег Аззос1агез и в Калифорнийском университете Банта Сгпх Ехгепз1оп, Ричард организовал семинары по цифровой обработке сигналов и практические занятия в рамках многочисленных технических конференций, а также в таких компаниях как Моторола (Могого1а), Локхид Мартин (ЕосЬЬеео МагГ1п), Тексас Инструментс (Техаз 1пзтпнпепгэ), Конексант (Сопехапт), Нортроп Грумман (ЫоггЬгор Сгшптап), Люсент (Ьпсепг), Нокиа (ЫоЫа), Квалкомм (Опа1соппп), Ханнвелл (Нопеуч е11), Нейшенел Семикондактор (Ыаг1опа! Яеш1сопдпсгог), Дженерал Дайнемикс (Сепега! Вупаш1сз) и Сименс (Яе)шепа) (теперь это Инфинион, 1пВшоп).
Автор многочисленных статей по обработке сигналов, он является заместителем редактора журнала 1ЕЕЕ Яйпа! Ргосезяпя, где он создал и редактирует колонку «Маленькие хитрости обработки сигналов» («Г)ЯР Т(рз е" ТПсйз»). Лайонс является членом почетного общества Эта Каппа Ню (Ега Карра Ь!и) и учится наносить прямые удары на бильярде. К нему можно обратиться по адресу: к. 1уопввхеее. окд.
Предисловие Эта книга — развитие первого учебника, Цифровая обработка сигналов», изданного в 1997 году, и ее задача, как и первого издания, состоит в том, чтобы помочь начинающим понять относительно новую технологию цифровой обработки сигналов (ЦОС). Во второе издание добавлены следующие материалы: а расширенное и более ясное изложение избранных вопросов спектрального анализа и цифровой фильтрации, охваченных в первом издании, что делает этот материал более ценным для тех, кто начинает изучать ЦОС; щ расширенное освещение квадратурных (комплексных 1/Я) сигналов, во многих случаях мы использовали трехмерные графики времени и частоты, чтобы улучшить их описание и придать физический смысл этим двухмерным сигналам; а с новым акцентом на квадратурные сигналы был добавлен материал, описывающий преобразование Гильберта и его практическое применение для генерации квадратурных сигналов; и обсуждение фильтров на основе частотной выборки, интерполированных КИХ-фильтров и интеграторов-гребенчатых фильтров, которое обеспечивает этим важным типам фильтров более широкое освещение, чем они получили в прошлой книге по ЦОС; и значительно расширена популярная глава «Маленькие хитрости цифровой обработки сигналов»; а пересмотрена терминология с целью сделать ее более совместимой с современным языком цифровой обработки сигналов.
Стало традицией рассказывать в этой части предисловия к учебнику по ЦОС читателям, почему им следует учить цифровую обработку сигналов. Мне не нужно рассказывать вам о том, насколько важна ЦОС в современном мире техники: вы уже это знаете. Я лишь скажу, что будущее электроники — в ЦО С, и с этой книгой вы не останетесь позади. 14 П едисловие Изучение цифровой обработки сигналов Изучение основ и языка цифровой обработки сигналов не требует глубоких аналитических навыков либо всесторонних знаний по математике.
Все, в чем вы нуждаетесь, — это немного опыта в элементарной алгебре, знание того, что такое синусоидальный сигнал, эта книга и энтузиазм. Это может показаться невероятным, особенно если вы просто полистали страницы этой книги и увидели рисунки и уравнения, которые выглядят довольно сложными. Содержимое здесь, вы говорите, выглядит подозрительно, как материал в технических журналах и учебниках, который в прошлом успешно сопротивлялся вашим попыткам понять его. Это не просто еще одна книга по цифровой обработке сигналов. Цель этой книги — дать ненавязчивые пояснения, сопровождаемые иллюстрациями так, что вы не просто можете, а должны понять материал'. Помните тот первый раз, когда вы увидели двух людей, играющих в шахматы? Наверное, игра выглядела загадочной и ставящей в тупик.
Как вы знаете, ни один отдельный шахматный ход не является сложным. Имея немного терпения, различные шахматные ходы можно выучить очень легко. Сложность игры состоит в том, чтобы решить, какую цоследовательность ходов сделать и когда. Также дело обстоит и с пониманием циф((овой обработки сигналов. Сначала мы изучаем основные правила и процессы, а потом учимся практически использовать их комбинации.
Если изучение цифровой обработки сигналов так легко, тогда почему этот предмет имеет репутацию сложного для понимания? Ответ частично лежит в том, как материал обычно преподносится в литературе. Тяжело передавать техническую информацию с ее математическими тонкостями в письменной форме. Одно дело писать уравнения, но другое — в целом объяснить их значение с практической точки зрения, и именно в этом цель этой книги. Слишком часто письменное объяснение теории цифровой обработки сигналов выступает в одной из двух форм: либо происходят математические чудеса, и читателю просто дается короткое и легкое уравнение без дальнейшего объяснения, либо на читателя обрушивается поток уравнений с комплексными переменнымн и такими фразами, как «очевидно, что» и «с разумным применением свойства однородности».
В защиту этих работ следует сказать, что их авторы обычно дают необходимую информацию, но читатель часто должен буквально брать в руки кирку и лопату, напяливать шахтерский шлем и стараться выкопать зерна знаний из горы математических выражений. (Эта книга представляет собой результаты нескольких плодотворных горных экспедиций.) Сколько раз вы следили за выводом уравнения, после которого автор утверждает, что он собирается проиллюстрировать уравнение примером, который оказывается просто другим уравнением? Несмотря на то, что математика необходима для описания цифровой обработки сигналов, я постарался избежать подавления ею читателя, потому что рецепт технического писания, который слишком насыщен уравнениями, тяжело усваивается начинающими. ! «Здесь мы имеем возможность более ясно изложить то, что уже было сказано» (Рене Декарт, 159б-1650).