Солонина А., Улахович Д. Алгоритмы и процессоры цифровой обработки сигналов (2002) (1095891), страница 31
Текст из файла (страница 31)
Трактовка тина результата — нечыс или лробн ыс числа — возлагается на пользователя. г) двонное слово в слове 7 б 5 4 3 2 ! О 3 2 1 О Преобразование форматов происходит прн различного рода пересылках данных (исходных, промежуто н)ых и консчпыл] нз ячеек памяти в рспгстры и наоборот, когда изменяется формат ("слоао", "длинное слово". "Расширенное слово" ). Наиболее общие правила преобразований форматов показа ны на рнс.
3.23 — 3.25. В качестве примеров выбраны форматы; слово данной 4 бита, двойное слово — 8 битов, расцгнрсинос слово — 10 битов. Прнаелснные правила легко распространяются на любу)о алину слов. 3 2 1 О 3 — хнах Х значащнн бнт 3.7Л О. Преобразование форматов в ЦПОС с фиксированной точкой ~= 1110!00 — 1101 зл 000! 100 д) РасшиРенное сплел в слева 9 8 7 6 5 4 3 2 ! О Рнс. 3. 3. ° 3.23.
Преобразование форматов представления целых чисел при целочисленной арифметике Алгоритмы и процессоры цифровой обработки сигналов 7'"лава 3. Данные )54 3 2 1 О а) слово в двойное славе 3 2 1 О а) слова в двойнсв слово 7 6 5 4 3 2 1 О 7 б 5 4 3 2 1 О 3 2 1 0 О) слово в РасшиРенное слово 6) слово в расширенное слово 9 б 7 6 5 4 3 2 1 О 9 6 7 6 5 4 3 2 1 7 6 5 4 3 2 1 О 7 6 5 4 3 2 1 О Я В 7 6 5 4 3 2 1 0 Я 6 7 б 5 4 3 2 1 О г) двонное слово в слово г) двойное слово волово 7 6 б 4 3 2 1 0 7 6 5 4 3 2 1 О 3 2 1 0 3 2 1 0 д) расширенное слово в слово Я б 7 6 5 4 3 2 1 0 о) Расширенное слово волово 9 б 7 б 5 4 3 2 1 О 3 2 1 0 3 2 1 0 рис. 3.24. преобразование форматов представления дробных чисел прн целочисленной арнфвгетнке РИС.
3.25. ПРЕОбраэсеанИЕ фОрМатОВ ПрЕдСтаВЛЕНИя дрсбНЫХ ЧИСЕЛ при дробной арифметике е) двойное слово в расширенное слово б — знак Х вЂ” значащий бнт в) двойное слово в Рвсшнрвннсе слово 3-Знак Х вЂ” значащий бнт Алгоритмы и процессоры цифровой обработки сигналов 3.7.11. Диапазон, динамический диапазон и точность представления чисел с фиксированной точкой Диппазаи представления чисел устанавливает границы между минимально л ликсимально лопустнмыми значениями, представляемыми в заданном форллате и коде.
Динамический дипппзан РД опрелеляют как: Д1( = 1п1ах значенис1 / 1 шш значение . -01, где !шах значсние1 и !и!!и значение:ь (Л представлены в заданном формате и коде. Динамический дипипзан ДД в децибелах равен ДД (дБ) = 20 10 ЯД). Точность прелставления чисел определяет максияагы~а допустимую тачнааиь прелсгавлсния дробной части вешественпых чисел. Напомним, что в двоичной системе счисления при заданном формате целые числа (в том числе, целые части вешественных чисел) представляются точна, а дробные — прибплнсенна. Максимально допустимая аисибка при прслставлении дробных чисел равна: О 2 ь-' = 2 (е+и = 2 "' — половине младшего значащего бита (половине шага квантования) при округлении; О 2 ь — младшему значашему биту Влагу квантования) при угечении, гле Ь вЂ” количество значащих битов; и = и — 1; т — длина слова, в котороч представляется число, например, лля слова т = и, для двойного слова т = = 2п.
Таююсть представления измеряется в битах и определяется как: !ойз((пзах значение) / ! шах ошибка при округлении)), где !азах значение~ соответствует: О лля дробных чисел — максимальному (по людулю) значению, прслставленному в залаппом формате н коде; О лля смеитнных чисел — максимальному (по модул1о) значению дробной часги числа, прслставлецной в заданном формате и коде.
Определим лнацазон, лннамнческий диапазон и точность прелставлспня данных различных типов. О Данные цеюго типа. ° Целые числа со знпки1л Ливи 3. Данные Диаипзан представления целых чисел со знаком в формате "слово" члнной и в дополнительном коле равен — 2ь< С<2ь — 1, где С вЂ” значение целого числа. Динамический диапазон ДД равен ЛД = 1-2Ч /111 = 2ь Например, при длине слова ! 6 битов диапазон равен — 2!з < С< 21з 1 а линамический лиапазон ичи в децибелах ЛД (дБ) = 20 1я (2м) = 90.3 лБ.
Аналогично можно опрелелить диапазон представления и динамический диапазон лля чисел в формате "двойное слово" длиной 2п. Например, при длине двойного слова 32 бита диапазон представления равен 23! < С< 23~ 1 а динамический диапазон ДД = 231 или в децибелах ДД (дБ) = 20 1я (2з') = 186,6 дБ. ° Беззнаковые числа. Диапазон представления целых беззнаковых чисел в формате слово ллнной и в дополнительном коде вдвое больший, чем лля целых со знаком (знаковый бит включен в число значашнх) и равен: 0 < С.< 2п — 1, О Да1и ~ые веигествениага типа. Дробные числа, Диапазон прелставления дробных чисел не зависит от типа арифметики (целочисленная/дробная). В форл1ате "слово" длиной и (формат ЯЫ в дополнительном коде диапазон равен — 1<С<1 — 2 ь, где С вЂ” значение лробного числа. Молуль дробного числа не превышает 1 независимо от длины формата.
.Гаваи 3. Данные Замечание или в децибелах ДД (дБ) = 90,3 дБ. диипмическид дипипзпи дд = 2)з нли в децибелах — 1 < С< 1 — 2 — 3! а динамический диапазон ДД = 23! или в децибелах ДД (дБ) = !86,6 лБ. Алгоритмы и процессоры цифровой обработки снгналоэ Прн целочисленной арифметике не следует пугать диапазоны представляемых дробных чисел н нх целочисленных эквивалентов. Диапазон представления целочисленных эквивалентов такой же, как у целых чисел.
Динамический диапазон ДД, равный ДД = 1-11/! 2 Ч = 2ь, у дробных чисел точно такой же, как у целых чисел при одинаковом формате н коле. Например, прн длине слова !6 битов, диапазон равен -! < С< ! — 2-)з, а динамический диапазон Лд = 2)з Аналогично можно определить диапазон представления и динамиче- ский диапазон для дробных чисел в формате "двойное слово" длиной 2и. Например, при длине двойного слова 32 бита диапазон представле- ния равен Согласно определению, точность прелставления дробного числа, например, при длине слона 16 битов, равна !ой!(~ — 1 ~ / ~ 2 н !) = 16 бит при длине слова 32 бита — 32 битам и т. д.
Подчеркнем, что определяемая таким образом точность является,нпхсимальнп допустимо!). Числа, меггьшие максимального значения (меньшие 1 по модулю), прелстааляются с большей точностью. ° Смешпнные числа. Наличие расширения ЕХТ в слове позволяет при внутренних вычислениях хранить мешпнные числа. диаггпзпн пх представления в дополнительном коде равен — 2ехт < С< 2ехт — 2 — (» — ехт — и где С вЂ” значение смешанного числа; » — алина расширенного слова, равная длине смешанного числа со знаком; ЕХТ вЂ” длина расширения ЕХТ, равная ллпне целой части числа; (г( — ЕХТ вЂ” !) — длина дроб- ной части числа.
Диналгический диапазон равен Дд = ~ — 2ЕХТ ~ у ~ 2-(» — ЕХТ вЂ” г)~ = 2(» — г) Точность прелставления пробной части сл(ешанного числа в соответствии с определением равна !о8)(1 -1 ~ /! 2 (» ехт) )) = (() — ЕХТ) бит, где 2-(» — ЕХт) = 2-(»- ЕХт !) ! — максимально допустимая ошибка при округлении дробной части числа, равная половине младшего значащего бита. Например, лля расширенного слова длиной» = 56 битов (слово аккумулятора в процессорах семейств Е)ЯР560хх фирмы Мо(ого(а) и длине расширения ЕХТ 8 битов дипипзпи представления равен 2х ~ С < 2а 2-лп ДД (дБ) = ЗЗ! лБ; точность представления дробной части числа равна (56 — 8) = 48 бит. 3.7.12. Увеличение динамического диапазона и точности представления данных в ЦПОС с фиксированной точкой В 11ПОС с ФТ, кроме представления данных с удвоенной точностью в формате "двойное слово", существует дополнительная возможность увеличения динамического диапазона и точности.
Для этого пользователь моден!рунт Увеличенный формат данных, например, для хранения пдипгп значения отводит два двойных слова. При выполнении арифметических операций с такимн данными нельзя использовать обычные команды пропессора, требуется специальная программная организация выполнения соответствующих операций, что, разумеется, снижает скорость их выполнения. Подобное прелставление данных предполагает отлельное хранение младшей и старшей 'гастей числа.
Для программной организации выполнения ариФметических операций используется специальный бит в регистре состояния — бит переноса С (Сапу Ь(!). В нелг сохраняется ! — при переносе старшего бита младшей части слова в младший бит старшей части слова (в операции сложения), либо генерируется ! — прн заеме из млалшего бита старшей части слова в старший бит младшей части слова. Алгоритмы и процессоры цифровой обработки сигналов 160 1б1 Глава 3. Данные Дру~ой способ увеличения динамического диапазона и точности прелставлепия данных основан на программной организации представления данных в форме с ПТ в ЦПОС с ФТ /гзг. рпзд. 3.
7% 3.7.13. Упакованные данные В табл. 3.4 символом *' отмечены пропессоры ТМБ320С62хх/64хх фирмы Техая 1пипппспш. поддерживающие обработку упакованных данных. Упакованные данные представляют собой группу данных формата "полуслово" или "байт" (все лапные в группе имеют олинаковый форлит), сохраняелгых в формате "слово". В процессорах ТМ5320С62хх/64хх слово имеет длину 32 бита, чго позволяет последовательно расположить в этом формате (упаковать) пару данных формата "полуслово" (2к16) нзи 2 пары данных формата байт (4кв, только в ТМ5320С64хх).
Упакованные данные являются локально замкнутыми, взаимные переносы или заемы битов между ними запрещены. Упаковка данных позволяет с помощью олной команды олновременно выполнить одинаковую операпию (например, сложение) отдельно со всеми даннымп. упакованными в формате "слово".
Примеры упакованных данных и выполнение нал ними операции сложения сч. в рпзд. 6З2 3.8. Представление данных с плавающей точкой Во всех процессорах с ПТ поддерживается представление данных с ФТ и ПТ. При этом, в форме с ФТ, как правило, представляются целые числа, а в форме с ПТ вЂ” только вещественные. Соответственно, все кол1анды обработки данных разделены на оперирующие с числами с ФТ или ПТ. Прелставление чисел с ФТ рассмотрено выше и в этом разлеле не обсуждается. Данные ветцвсгпввиипгп гпиип (вещественные числа) прелставляются в форлге с ПТ и отображают алгебраическую показательную форму представления числа — с ул~ноженг1ем на 1Ое", где и — целое.