Вопросы ГЭК 2009new (1094840), страница 20
Текст из файла (страница 20)
Правовое обеспечение - совокупность правовых норм, регламентирующих создание и функционирование информационной системы, порядок получения, преобразования и использования информации. В состав правового обеспечения входят законы, указы, постановления государственных органов власти, приказы, инструкции и другие нормативные документы министерств, ведомств и местных органов власти.
Организационное обеспечение - совокупность методов и средств. регламентирующих взаимодействие персонала с техническими средствами и между собой в процессе разработки и эксплуатации информационной системы.
Принципы построения автоматизированных систем управления.
Информация непосредственно и неразрывно связана с процессом управления. Самое общее кибернетическое определение управления гласит: управление есть процесс целенаправленной переработки информации.
Управление определяется как функция системы, обеспечивающая либо сохранение совокупности ее основных свойств, либо ее развитие в заданном направлении. И в том и в другом случае управление осуществляется для достижения определенной цели. В системе управления можно выделить две подсистемы: управляющую и управляемую. Первая осуществляет собственно функции управления, вторая является объектом управления.
Внешняя среда и объект правления информируют систему о своем состоянии, управляющая подсистема анализирует эту информацию, вырабатывает управляющее воздействие на объект управления, отвечает на возмущения внешней среды и при необходимости модифицирует цель и структуру всей системы. Объект управления и управляющая система связаны между собой и внешней средой через информационные потоки:
ИП1 - информационный поток из внешней среды в управляющую подсистему, который, с одной стороны, представляет поток нормативной информации, создаваемой государственными учреждениями в части законодательства, а с другой стороны - поток информации о конъюнктуре рынка, создаваемый конкурентами, потребителями, поставщиками;
ИП2 - информационный поток из управляющей подсистемы во внешнюю среду, а именно: отчетная информация, прежде всего финансовая информация в государственные органы, инвесторам, кредиторам, потребителям; маркетинговая информация потенциальным потребителям:
ИПЗ - информационный поток из управляющей подсистемы на объект управления (прямая кибернетическая связь), представляющий совокупность плановой, нормативной и распорядительной информации для осуществления хозяйственных процессов;
ИП4 - информационный поток от объекта управления в управляющую подсистему (обратная кибернетическая связь), который отражает учетную информацию о состоянии объекта управления экономической системой (сырья, материалов, денежных, энергетических, трудовых ресурсов, готовой продукции и выполненных услугах) в результате выполнения хозяйственных процессов. Во второй половине 1960-х годов и в 1970-х гг. получили развитие автоматизированные системы управления (АСУ) сложными объектами хозяйственной деятельности (предприятиями, энергосистемами, отраслями, сложными участками производства).
АСУ - это комплекс технических и программных средств, совместно с организационными структурами (отдельными людьми и коллективом), обеспечивающий управление объектом (комплексом) в производственной, научной или общественной среде. Цель разработки и внедрения АСУ:
-
повышение эффективности принимаемых решений, особенно в части наилучшего использования всех видов ресурсов и сокращения потерь, достигаемых за счет обеспечения процесса принятия решений своевременной, полной и точной информацией, а также применения математических методов оптимизации;
-
повышение производительности труда инженерно-технического и управленческого персонала (и его сокращение) за счет выполнения основного объема учетных и расчетных задач на ЭВМ.
Кроме того, внедрение АСУ обычно приводит к совершенствованию организационных структур и методов управления, более гибкой регламентации документооборота и процедур управления, упорядочению использования и создания нормативов, совершенствованию организации производства. Важнейшими принципами построения эффективных АСУ являются:
-
Принцип интеграции, заключающийся в том, что обрабатываемые данные, однажды введенные в АСУ (базы данных), многократно используются для решения большого числа задач, при этом устраняется дублирование данных и операций их преобразования.
-
Принцип системности, заключающийся в обработке данных в различных разрезах, чтобы
получить информацию, необходимую для принятия решении на всех уровнях и во всех функциональных подсистемах управления; -
Принцип комплексности, подразумевающий механизацию и автоматизацию процедур преобразования данных на всех стадиях техпроцесса АСУ.
АСУ подразделяются по функциям:
-
административно-организационные (например, системы управления предприятием - АСУП, отраслевые системы управления - ОАСУ);
-
технологическими (автоматизированные системы управления технологическими процессами - АСУТП, в свою очередь подразделяющиеся на гибкие производственные системы - ГПС, автоматизированные системы контроля качества продукции - АСК, системы управления станками и линиями с числовым программным управлением - ЧПУ);
-
интегрированные, объединяющие функции перечисленных АСУ в различных комбинациях.
Состав интегрированной системы автоматизации предприятия.
В современном промышленном производстве все большее значение приобретает возможность оперативного доступа к достоверной и точной информации их любой точки управления производством, поскольку это определяющим образом влияет на эффективность работы предприятия, включая производительность труда, качество и конкурентоспособность выпускаемой продукции. Эта проблема решается путем создания интегрированной многоуровневой распределенной АСУ. Интегрированная система автоматизации предприятия может быть представлена в виде 5-уровневой пирамиды.
Нижний, нулевой уровень системы включает набор датчиков и исполнительных устройств, встраиваемых в конструктивные узлы технологического оборудования и предназначенных для сбора первичной информации и реализации исполнительных воздействий. Этот уровень называется уровнем I/O (ввода-вывода).
Первый уровень служит для непосредственного автоматического управления технологическими процессами с помощью различных УСО и ПК (промышленные контроллеры). Этот уровень получил название control (непосредственное управление).
Второй уровень, названный SCADA (Supervisory Control and Data Acquisition - сбор данных и диспетчерское управление), предназначен для отображения (или визуализации) данных в производственном процессе и оперативного комплексного управления различными агрегатами, в том числе и с участием диспетчерского персонала.
Третий уровень MES (Manufacturing Execution System) - средства управления производством - выполняет упорядоченную обработку информации о ходе изготовления продукции в различных цехах, обеспечивает управление качеством, а также является источником необходимой информации в реальном времени для верхнего уровня управления предприятием. Системы MES имеют ряд подсистем следующего назначения:
-
синтез расписаний производственных операций;
-
распределение ресурсов, в том числе распределение исполнителей по работам;
-
диспетчирование потоков заказов и работ;
-
управление документами, относящимися к выполняемым операциям;
-
оперативный контроль качества;
оперативная корректировка параметров процессов на основе данных о протекании процессов.
Современные АСУТП на базе промышленных контроллеров и SCADA-систем позволяют значительно повысить экономическую эффективность производства за счет повышения точности регулирования технологических режимов, снижения влияния человеческого фактора, применения развитых средств диагностики и противоаварийной автоматики, и т.д. Если рассматривать традиционную двухуровневую информационную систему производственного предприятия «АСУТП - АСУП», то MES-решения занимают в ней промежуточное положение, выполняя роль поставщика, информации из АСУТП в АСУП и обратно. Данные из MES-системы могут быть интегрированы с другими системами для улучшения мониторинга, отслеживания динамики и выверки процесса производства. Они облегчают работу, как уровне управления, так и на производственных участках. Задачей АСУТП является улучшение работы одного процесса или технологической линии. MES-системы ориентированы на анализ того, как данный отдельный процесс влияет на производство в целом, они могут в зависимости от текущей рыночной ситуации оптимизировать это производство. Одной из наиболее сильных сторон MES-систем является то, что они позволяют комбинировать основные бизнес-цели предприятия и локальные производственные процессы наиболее эффективным образом.
Четвертый, верхний уровень управления определяется как MRP и ERP - планирование ресурсов предприятия. В России системы этого уровня больше известны под именем АСУП (автоматизированные системы управления предприятием). Они предназначены для автоматизации планирования производства и финансовой деятельности, снабжения и продаж, анализа и прогнозирования и т.д. Эту модель комплексной автоматизации предприятия можно упрощать, объединяя любые два соседних уровня, но принципиально подход остается одинаковым. Рассмотрим основные задачи, решаемые на различных уровнях управления.
В промышленные контроллеры {первый уровень) загружаются программы и данные из ЭВМ второго уровня, уставки, обеспечивающие координацию и управление агрегатом по критериям оптимальности управления технологическим процессом в целом, выполняется вывод информации на второй уровень управления служебной, диагностической и оперативной информации, т.е. данных о состоянии агрегата, технологического процесса. Особенность обмена информацией между первым и вторым уровнями состоит в высокой степени регулярности. Здесь применимы режимы обмена, соответствующие локальным промышленным сетям, которые в настоящее время выполняются в стандартах Bitbus, Profibus и т.п. Первый уровень управления реализуется, например, на промышленных контроллерах СМ1820М.ПК, ЭМИКОН, МИК, СИКОН и др. Второй уровень управления должен обеспечивать:
-
диспетчерское наблюдение за технологическим процессом по его графическому отображению на экране в реальном масштабе времени;
-
расчет и выбор законов управления, настроек и уставок, соответствующих заданным показателям качества управления и текущим показателям объекта управления;
-
хранение и дистанционную загрузку управляющих программ в ПК;
-
оперативное сопровождение моделей объектов управления типа «агрегат», «технологический процесс», корректировку моделей по результатам обработки информации от первого уровня;
-
синхронизацию и устойчивую работу систем типа «агрегат» для группового управления технологическим оборудованием;
-
ведение единой базы данных технологического процесса;
-
контроль работоспособности оборудования первого уровня, переход на резервную схему в случае отказа отдельных элементов.
Второй уровень управления реализуется на базе специализированных промышленных УВК, например СМ1820М.ВУ или на базе ПЭВМ. Диспетчерский интерфейс реализуется SCADA-системами, например, широко известным пакетом InTouch фирмы Wonderware. Связь с контроллерами и приложениями в SCADA-системах обычно осуществляется посредством технологий DDE, OLE, OPC или ODBC. Машины второго уровня должны объединяться в однородную локальную сеть предприятия (типа Ethernet) с выходом на третий уровень управления. В качестве каналов связи используют последовательные промышленные шины Profibus, CANbus, Foundation Fieldbus и др. В SCADA-системах в основном применяют ОС UNIX или Windows NT.
Третий уровень характеризуется необходимостью решения задач оперативной упорядоченной обработки первичной информации из цеха и передачи этой информации на верхний уровень планирования ресурсов предприятия. Третий уровень реализуется на ПЭВМ.
Для решения задач четвертого уровня выбирают многопроцессорные системы повышенной производительности.
Понятие и составляющие информационной системы (ИС). Модели жизненного цикла ИС. Классы задач, решаемые ИС.
Информационная система (в контексте управления) представляет собой коммуникационную систему по сбору, передаче, переработке информации для реализации функции управления
Информационная система (ИС), как правило, включает следующие компоненты:
-
функциональные компоненты;
-
компоненты системы обработки данных и знаний;
-
организационные компоненты.
Под функциональными компонентами понимается система функций управления – полный набор взаимосвязанных во времени и пространстве работ по управлению, необходимых для достижения целей управления.
Системы обработки данных и знаний предназначены для информационного обслуживания системы управления. Компонентами этой системы являются: информационное обеспечение, программное обеспечение, техническое обеспечение, правовое обеспечение, лингвистическое обеспечение.