Главная » Просмотр файлов » Вопросы ГЭК 2009new

Вопросы ГЭК 2009new (1094840), страница 24

Файл №1094840 Вопросы ГЭК 2009new (Разработка программы диагностики ошибок при передаче сообщений по технологии клиент-сервер) 24 страницаВопросы ГЭК 2009new (1094840) страница 242018-02-16СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 24)

Для приведения сущности ко второй нормальной форме следует:

  • выделить атрибуты, которые зависят только от части первичного ключа, создать новую сущность;

  • поместить атрибуты, зависящие от части ключа, в их собственную (новую) сущность;

  • установить связь от прежней сущности к новой.

Третья нормальная форма (3NF). Сущность находится в третьей нормальной форме, если она находится во второй нормальной форме и никакой неключевой атрибут не зависит от другого неключевого атрибута (не должно быть взаимозависимости между неключевыми атрибутами).

Для приведения сущности к третьей нормальной форме следует:

  • создать новую сущность и перенести в нее атрибуты с одной и той же зависимостью от неключевого атрибута;

  • использовать атрибут(ы), определяющий эту зависимость, в качестве первичного ключа новой сущности;

  • установить связь от новой сущности к старой.

Реляционная алгебра. Основные категории команд языка реляционных баз данных (SQL).

Обработку данных реляционной модели можно реализовать методами реляционной алгебры.

Реляционная алгебра, определена Коддом и содержит 8 операций, разделенных на две группы:

  1. Теоретико – множественные операции - объединение, пересечение, вычитание и декартово произведение.

  2. Специальные реляционные операции – выборка, проекция, соединение, деление

Теоретико-множественные операции

Реляционный оператор представляет собой функцию с отношениями в качестве аргументов и возвращающую отношение в качестве результата.

R=f(R1, R2….. Rn)

В качестве аргументов в реляционные операторы могут быть проставлены другие реляционные операторы, подходящие по типу.

R=f(f1(R11, R21….. Rn1), f2(R21, R22….. R2n)….)

В силу этого реляционная алгебра является замкнутой.

Отношения называются совместимыми по типу, если они имеют идентичные заголовки, а именно:

  1. отношения имеют одно и тоже множество имен атрибутов, т.е. для любого атрибута в одном отношении найдется атрибут с таким же наименованием в другом отношении.

  2. атрибуты с одинаковыми именами определены на одних и тех же доменах.

Некоторые отношения не являются совместимыми по типу, но становятся таковыми после переименования атрибутов.

Оператор переименования R rename A1,A2,… as new A1, new A2…,

Например:

R rename student as starosta

Объединение

Объединением двух совместимых по типу отношений называется отношение с тем же заголовком, что и у R1 и R2, и телом, включающим все кортежи операндов, за исключением повторяющихся.

Синтаксис R1 union R2

R1

Шифр

Фамилия

Стипендия

11

Котова

300

22

Серов

250

33

Леонидов

350

R2

Шифр

Фамилия

Стипендия

11

Котова

300

22

Даниленко

250

55

Леонидов

350

Объединение

Шифр

Фамилия

Стипендия

11

Котова

300

22

Серов

250

33

Леонидов

350

22

Даниленко

250

55

Леонидов

350

Операторы не передают результату никаких данных о потенциальных ключах.

Пересечение

Пересечением двух совместимых по типу отношений R1 и R2 называется отношение с тем же заголовком, что и у отношений R1 и R2, и телом, состоящим из кортежей, принадлежащих одновременно обоим отношениям R1 и R2.

Синтаксис

R1 intersect R2

Шифр

Фамилия

Стипендия

11

Котова

300

Вычитание

Вычитанием двух совместимых по типу отношений R1 и R2, называется отношение с тем же заголовком, что и у отношений R1 и R2, и телом, состоящим из кортежей, принадлежащих отношению R1 и не принадлежащих R2.

Синтаксис R1 minus R2

Шифр

Фамилия

Стипендия

22

Серов

250

33

Леонидов

350

Декартово произведение

Декартовым произведением двух отношений R1(R11, R12, R13…) и R2(R21,R22,R23,…) называется отношение, заголовок которого является сцеплением заголовком отношений R1 и R2:

(R11, R12, R13… R21,R22,R23,…), а тело состоит из кортежей, являющихся сцеплением кортежей отношений R1 и R2

(r11, r12, r13… r21, r22, r23….), таких что (r11, r12, r13…) принадлежит R1, а (r21, r22, r23….) принадлежит R2/

Синтаксис R1 times R2

Мощность произведения равна произведению мощностей. Если атрибуты R1 и R2 имеют атрибуты с одинаковыми наименованиями, то перед выполнением операции декартового произведения такие атрибуты необходимо переименовать. Совместимость по типу не требуется.

R1

Шифр

Фамилия

11

Котова

22

Серов

33

Леонидов

R2

Код

Название

1

Математика

2

Философия

R1 times R2

Шифр

Фамилия

Код

Название

11

Котова

1

Математика

11

Котова

2

Философия

22

Серов

1

Математика

22

Серов

2

Философия

33

Леонидов

1

Математика

33

Леонидов

2

Философия

Специальные реляционные операторы

Выборка (ограничение, селекция)

Выборку называют горизонтальным срезом отношения по некоторому условию.

Выборкой на отношении R с условием С называется отношение с тем же заголовком, что и у отношения R, и телом, состоящим из кортежей, значения атрибутов которых при подстановке в условие С дают значение ИСТИНА.

Обычно условие С имеет вид R11 R12, где  принадлежит {=}, а R11 и R12 атрибуты отношения R или скалярные значения. Такие выборки называются  - выборки.

Синтаксис R where C или R where R11 R12

Шифр

Фамилия

Стипендия

11

Котова

300

22

Серов

250

33

Леонидов

350

Выборка R where стипендия >250

Шифр

Фамилия

Стипендия

11

Котова

300

33

Леонидов

350

Проекция

Проекцией отношения R по атрибутам R1, R2, R3…Rn, где каждый атрибут принадлежит R, называется отношение с заголовком (R1, R2, R3…Rn) и телом, содержащим множество кортежей вида (r1,r2,r3,…rn). При этом дубликаты кортежи удаляются.

Проекцию называют вертикальным срезом отношения.

Синтаксис R[R1, R2, R3…Rn]

Шифр

Фамилия

Факультет

11

Котова

ФИРЭ

22

Серов

Энергетический

33

Леонидов

ФИРЭ

55

Серов

СФ

R[факультет]

Факультет

ФИРЭ

Энергетический

ФИРЭ

СФ

Соединение

Обычно рассматривают несколько разновидностей операции соединения.

Общая операция соединения

-соединение

Экви-соединение

Естественное соединение

Наиболее важным из этих операций является операция естественного соединения. Так как остальные разновидности соединения являются частными случаями общей операции соединения.

Общая операция соединения:

Соединением отношений R1 и R2 по условию называется отношение

(R1 times R2) where C, где С представляет собой логическое выражение, в которое могут входить атрибуты отношений R1 и R2 и/или скалярные выражения. То есть, чтобы выполнить операцию соединения, необходимо выполнить последовательно операцию декартова произведения и выборки. Если в отношениях R1 и R2 имеются атрибуты с одинаковыми наименованиями, то перед выполнением соединения такие атрибуты необходимо переименовать.

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее