Диссертация (1091936), страница 16
Текст из файла (страница 16)
Tang, L. Liao, W. Yu,J. Li, F. Seland // Journal of Power Sources. – 2014. – Vol. 267. – P. 706–713.41. Yuan, W. Pt-based nanoparticles on non-covalent functionalized carbonnanotubes as effective electrocatalysts for proton exchange membrane fuel cells /W. Yuan, S. Lu, Y. Xiang, S .Jiang // RSC Advances. – 2014. – Vol. 4 (86). –P. 46265–46284.42. Stamatin,S.N.Influenceofdifferentcarbonnanostructureson the electrocatalytic activity and stability of Pt supported electrocatalysts /S.N. Stamatin, M. Borghei, S.M. Andersen, S. Veltze, V.
Ruiz, E. Kauppinen //International Journal of Hydrogen Energy. – 2014. – Vol. 39 (16). – P. 8215–8224.43. Lu, Y. Strongly coupled Pd nanotetrahedron/tungsten oxide nanosheethybrids with enhanced catalytic activity and stability as oxygen reductionelectrocatalysts / Y. Lu, Y. Jiang, X. Gao, X.
Wang, W. Chen // Journal of the AmericanChemical Society. – Vol. 136. – 2014. – 11687–11697.44. Fuentes, R.E. Pt-Ir/TiC Electrocatalysts for PEM Fuel Cell/ElectrolyzerProcess / R.E. Fuentes, H.R. Colon-Mercado, M.J. Martinez-Rodriguez // Journalof the Electrochemical Society. – Vol.
161. – 2013. – P. F77–F82.45. Seifitokaldani, A. Electrochemically stable titanium oxy-nitride supportfor platinum electro- catalyst for PEM Fuel Cell Applications / A. Seifitokaldani,O. Savadogo // Electrochimica Acta. – 2015. – Vol. 167. – P. 237–245.12146. Jiang, Z.-Z. Carbon riveted microcapsule Pt/MWCNTs-TiO2 catalystprepared by in situ carbonized glucose with ultrahigh stability for proton exchangemembrane fuel cell / Z.-Z.
Jiang, Z.-B. Wang, Y.-Y. Chu, D.-M. Gu, G.-P. Yin //Energy & Environmental Science. – 2011. – Vol. 4. – P. 2558–2566.47. Hu, Y. Fe3C-based oxygen reduction catalysts: synthesis, hollow sphericalstructures and applications in fuel cells / Y. Hu, J. O. Jensen, W. Zhang, S. Martin, R.Chenitz, C. Pan, W. Xing, N. J. Bjerrum, Q.
Li // Journal of Materials Chemistry A. –2015. – Vol. 3 – P. 1752–1760.48. Lee, C.-W. Study on the effect of current collector structureson the performance of MCFCs using three-dimensional fluid dynamics analysis. /C.-W. Lee, M. Lee, S.-P. Yoon, H.-C. Ham, S.H. Choi, J. Han, S.W. Nam,D.-Y. Yang // Journal of Industrial and Engineering Chemistry. – 2017. – Vol. 51. –P.
153-16149. Michel,M.Usinglayer-by-layerassemblyofpolyanilinefibersin the fast preparation of high performance fuel cell nanostructured membraneelectrodes / M. Michel, F. Ettingshausen, F. Scheiba, A. Wolz, C. Roth // PhysicalChemistry Chemical Physics. – 2008. – Vol. 10. – P. 3796-3801.50. Газодиффузионный слой для топливного элемента: пат. 2465692 Рос.Федерация: H01M4/86, H01M8/10 / В.
Норихиса, Ф. Нагаказу; заявитель ипатентообладатель Ниссан мотор Ко, Юниверсити оф яманаси; заявл. 16.09.2009опубл. 27.10.2012 Бюл. № 30.51. Zhang, X. Carbon fiber paper for fuel cell electrode / X. Zhang, Z. Shen //Fuel. – 2002. – Vol. 81. – P. 2199–2201.52. Wind, J. Metallic bipolar plates for PEM fuel cells / J. Wind, R.
Spah, W.Kaiser, G. Bohm // Journal of Power Sources. – 2002. – Vol. 105 –P. 256–260.53. Ismail, M.S. Thermal modelling of the cathode in air-breathing PEM fuelcells / M.S. Ismail, D.B. Ingham, K.J. Hughes, L.M.M. Pourkashanian // AppliedEnergy. – 2013. – Vol. 111. – P. 529-537.12254. Shao, M. Recent advances in electrocatalysts for oxygen reduction reaction /M. Shao, Q.
Chang, J-P. Dodelet, R. Chenitz // Chemical Reviews. – 2016. –Vol. 116 (6). –P. 3594–3657.55. Wen, S-H. Decoration of carbon nanotubes with highly dispersed platinumnanoparticles for electrocatalytic application. / S-H. Wen, S-G. Cui, L. Shi, R-P. Liang,J-D. Qiu // Journal of Electroanalytical Chemistry. – 2015.
– Vol. 738. – P. 77–83.56. Bezerra, C.W.B. A review of heat-treatment effects on activityand stability of PEM fuel cell catalysts for oxygen reduction reaction / C.W.B. Bezerra,L. Zhang, H. Liu, K. Lee, A.L.B. Marques, E.P. Marques // Journal of Power Sources. –2007. – Vol.
173 (2) – P. 891–908.57. Яштулов,палладиянаН.А.пористомФормированиенанокомпозитныхкремниианодовдлякатализаторовтопливныхэлементов/Н.А. Яштулов, С.С. Гаврин, А.А. Ревина, В.Р. Флид // Известия РАН. Серияхимическая. – 2010. – Т. 59. – С. 1450–1455.58. Tiwari, J.N. Recent progress in the development of anode and cathodecatalysts for direct methanol fuel cells (review) / J.N. Tiwari, R.N. Tiwari,G. Singh, K.S. Kim // Nano Energy. – 2013. – Vol.
2. – P. 553–578.59. Chen, X. Highly active nanoporous Pt-based alloy as anode and cathodecatalyst for direct methanol fuel cells / X. Chen, Y. Jiang, J. Sun, C. Jin, Z. Zhang //Journal of Power Sources. – 2014. – Vol. 267. – P. 212–218.60. Chen, Z. Polyaniline nanofibre supported platinum nanoelectrocatalystsfor direct methanol fuel cells / Z. Chen, L. Xu, W. Li, M. Waje, Y. Yan //Nanotechnology.
– 2006. – Vol. 17. – P. 5254–5259.61. Qu, Y.T. Pt–rGO–TiO2 nanocomposite by UV-photoreduction methodas promising electrocatalyst for methanol oxidation / Y.T. Qu, Y.Z. Gao,F.D. Kong, S. Zhang, L. Du, G.P. Yin // International Journal of Hydrogen Energy. –2013. – Vol. 38. – P. 12310–12317.62. Lee,H.LocalizedPdOvergrowthonPtcubicnanocrystalsfor enhanced electrocatalytic oxidation of formic acid / H. Lee, S.E.
Habas,123G.A. Somorjai, P. Yang// Journal of the american chemical society. – 2008 – Vol. 130.– P. 5406–5407.63. Zhou, Y. Poisoning and regeneration of Pd catalysts in direct formic acidfuel cell / Y. Zhou, Z. Khan, R.I. Masel // Electrochem. Acta.
– 2010 –Vol. 55. – P. 5024–5027.64. Winjobi, O. Carbon nanotubes supported platinum-palladium nanoparticlesfor formic acid oxidation / O. Winjobi, Z. Zhang, C. Liang, W Li // Electrochem. Acta.– 2010 – Vol. 55. – P. 4217–4221.65. Miyake H., Okada T., Samjeske G., Osawa M. Formic acid electrooxidationonPdinacidicsolutionstudiedbysurface-enhancedinfrared absorbtion spectroscopy // Phys.
Chem. Chem. Phys. – 2008. – № 10. –P. 3662–3669.66. Яштулов,вприсутствииН.А.Особенностинанокомпозитовокисленияпористогомуравьинойкремнияскислотыпалладием/Н.А. Яштулов, В.Р. Флид // Известия РАН. Серия химическая. – 2013. – Т. 62. –С. 1332-1337.67. Яштулов,Н.А.Нанокатализаторыпалладий-платина-пористыйкремний для топливных элементов с прямым окислением муравьиной кислоты /Н.А. Яштулов, Л.Н. Патрикеев, В.О. Зенченко, М.В.
Лебедева, Н.К. Зайцев, В.Р.Флид // Российские нанотехнологии. – 2016. – Т. 11. – С. 45–50.68. Тарасевич, М.Р. Топливные элементы прямого окисления спиртов /М.Р. Тарасевич, А.В. Кузов // Международный научный журнал альтернативнаяэнергетика и экология. – 2010. – №7. – С. 86-108.69. De Clercq, A. Core–shell Pd–Pt nanocubes for the CO oxidation /O. Margeat, G.
Sitja, C.R. Henry, S. Giorgio // Journal of catalysis. – 2016 –Vol. 336 – P. 33–40.70. Mustain, W.E. Kinetics and mechanism for the oxygen reduction reaction onpolycrystallinecobalt–palladiumelectrocatalystsinacidmedia/W.E. Mustain, J. Prakash // Journal of Power Sources – 2007. – Vol. 170 –P. 28–37.12471. Wang, Y. Roles of proton and electric field in the electro reduction of O2 onPt (111) surfaces: results of an ab-initio molecular dynamics study.
// Journalof Physical Chemistry B. – 2004. – Vol. 108. – P. 4376–4385.72. Sidik R.A. Density functional theory study of O2 electroreduction whenbonded to a Pt dual site./ R.A. Sidik, A.B. Anderson // Journal of electroanalyticalchemistry. – 2002. – Vol. 528. – P. 69 – 78.73. Zheng, J.-S. Effect of carbon nanofiber microstructure on oxygen reductionactivity of supported palladium electrocatalyst / J.-S.
Zheng, X.-S. Zhang, P. Li., J. Zhu,X.-G. Zhou, W.-K. Yuan // Electrochemistry Communications. – 2007. – Vol. 9 –P. 895–900.74. Наумов,А.Рынокполикристаллическогокремния:состояниеи перспективы // Электроника: наука, технология, бизнес. – 2015 – Т. 9 (149). –С. 94–101.75. Kolasinski, K. Silicon nanostructures from electroless electrochemicaletching. // Current Opinion in Solid State and Materials Science. –2005. – Vol.9 –P. 73–83.76. Зимин, С.П.