Диссертация (1090573), страница 8
Текст из файла (страница 8)
Нелинейнооптическая восприимчивость второго порядка определялась из сравнениявеличин IS/I0 и Iref/I0.Интенсивность ВГ I(2ω) генерируемая тонкой пленкой, облучаемойизлучением накачки с интенсивностью I(ω) может быть записана как:2 2 ()χ2�∙�2 ()(2)(2) ∝ �44sin2 ( /2 )( /2 )2�(3)где lS – толщина пленки, , n(ω) и n(2ω) – показатели преломления среды начастоте накачки и ВГ, соответственно, а lC – корреляционная длинаматериала пленки.Корреляционная длина исследуемого образца определяется для, и в случае тонкой пленки этагеометрии на просвет = �4[() − (2)]величина много больше толщины пленки lS.
В таком случае можно считать:sin2 ( /2 )( /2 )2~1.Используя это приближение, значение коэффициента пропусканиясреды Т, а также известные значения показателей преломления дляисследуемого образца и образца сравнения, определим отношение IS/Iref наосновании формулы (3):2() (2) χ∙~�����, χ22 () (2)22где lC,ref – корреляционная длина для образца сравнения, и χ – нелинейнооптическая восприимчивость второго порядка для образца сравнения.Таким образом, с учетом сделанных выше допущений, из уравнений(3) и (4) получим в геометрии на просвет:χ ~ �,� � 2 () (2)2 ( () (2))∙( ⁄0 )� ⁄0 �1/2�χ(4)справедливоДля геометрии на отражение = �4[() + (2)]обратное, то есть корееляционная длина много меньше толщины пленки. Сдругой стороны, в этом случае именно корреляционные длины определяютэффективный объем, обеспечивающий генерацию второй гаромоники.Поэтомудлягеометриинаотражениевосприимчивость орпределяется выражением:45эффективнаянелинейнаяχ eff lC , ref= lC , S I S / I 0 Trefω I / I T ω ref 0 2 n S (ω ) n (ω ) ref2 n S ( 2ω ) n ( 2ω ) ref1/ 2χ ref(5)Обращаем внимание, что отличие выражений (4) и (5), часто неучитываемое, как раз связано с первым множителем, где толщина образцазаменяется когерентной длиной в образце.1.5.
Механизмы процессов отжига и их моделированиеИзлучение с ультракороткими импульсами (УКИ), в том числефемтосекундными, в настоящее время широко используется для обработкиматериалов, включая лазерную резку, сверление, а также лазерный отжиг.Больше всего работ посвящено лазерному отжигу кремния с применениемУКИ. Рассмотрим в настоящем разделе модель лазерного отжига,предложенную В.И. Емельяновым [1,2]При лазерном отжиге процесс кристаллизации в значительной мерезависит от теплопроводящих свойств подложки. Если тепло, выделяемоеприкристаллизациикристаллизации),поглощенноебыстровотводитсяпленкев(скрытаяподложку,тотеплотаскоростькристаллизации мала.
Если же скорость термоотвода в подложку мала, товыделяемое при кристаллизации тепло, распространяется в пленке истимулируеткристаллизациюсоседнейобласти.Приэтомможетвозникнуть режим автокаталитической (взрывной) кристаллизация.В случае медленной кристаллизации лазерный нагрев аморфнойпленки PZT вызывает нуклеацию и рост кристаллической фазы в ней.Обычно для описания кинетики кристаллизации аморфной фазы PZTиспользуется формула Аврами для относительного объема кристаллическойфазыxc (t ) = ∆Vс (t ) / ∆V , где ∆Vс (t ) – объем кристаллической фазы вобъеме ∆V [107]:xc (t ) = 1 − e − kt46n(6)где n – коэффициент, изменяющийся от 1 до 3.
Уравнение кинетикигомогенной кристаллизации имеет вид:dadta−Ea�k TB=− eτ(7) ,где a (t ) = ∆Va (t ) / ∆V – относительный объем, занимаемый аморфнойфазой, Ea – энергия активации кристаллизации, τ – параметр.Интегрирование уравнения (7) даетa (t ) = a (t = 0)e − kt ,(8)гдеk=1τ−Ea�k TBe.(9)Если в начальный момент весь объем занят аморфной фазой, то ввыражении a(t = 0) = 1. Тогда относительный объем кристаллической фазыхс (t) = 1 - a(t) изменяется по законуx c (t ) = 1 − e − kt(10)Формула (10) соответствует общей формуле (6), в которой n=1, акоэффициент k задается формулой (9).В случае быстрой кристаллизации превращение аморфной пленки вкристаллическую может происходить по двум различным сценариям:взрывная твердофазная эпитаксия и взрывная твердофазная нуклеация(ВТФК) [108].В упругой среде распространение волны взрывной кристаллизацииописывается тремя уравнениями [1].Это- уравнение теплопроводности∂T∂t= χΔT + aWQCυ τ0exp �−Ea −θξkB T� − γT (T − TS ) + Q ext(11)где χ - коэффициент температуропроводности, γТ- константа скороститеплопроводности в подложку, ТS – однородная температура подложки, Qext47энергия, поступающая от лазера, WQ - скрытая теплота кристаллизации, Cυ -теплоемкость, τ0 – кинетическая постоянная кристаллизации, локальная ξ=divuдеформация, u - вектор смещения в упругой среде.Уравнение кристаллизационной кинетики:aEa − θξ∂a= − exp �−�τ0kBT∂t(12)где θ - деформационный потенциал.Уравнение для локальной деформации среды∂2 ξгде∂t2= cl Δξ −KαρΔT −θ1ρΔ(ain − a)(13)α - коэффициент теплового расширения, К – объемный модульупругости, ρ - плотность среды, сl – продольная скорость звука,θ1 = K ( ∆Vс − ∆Va ) / ∆Va = K ( ρ c − ρ a ) / ρ cдеформационный-потенциалкристаллизации (ρc, ρa – плотности кристаллической и аморфной фаз,соответственно), ain = 1 - начальный относительный объем аморфной фазы.Уравнения (11)-(13)описывающуюкинетикуобразуют замкнутую систему уравнений,кристаллизациивкристаллизационно-деформационно-тепловой модели.Введем безразмерныебегущую координату y = ( x − Vt )(χτ )−1 / 2где V – скорость фронта нуклеации (волны переброса), двигающегося вдольоси x,V = ((χ ⋅ τ −1 )(γ + 1 + δ )) ,(14а)δ = (θ ⋅ θ1 )(k B ⋅ T0 ⋅ ρ ⋅ cl2 ) ,(14б)γ = (WQ ⋅ Ea )/ (cvT02 k B ),(14в)1/ 2−11τ= E exp − a -константа скорости кристаллизации;τ0 k BT0 1температуру48B=E a T1k BT0 T0(15)и относительный объем аморфной фазыA=WQ E a a1.cv T02 k B(16)Тогда на основе уравнений (11)-(13) можно получить [1], впренебрежении теплоотводом в подложку, зависимость безразмернойтемпературы от бегущей безразмерной координаты−yB(y) = C(2υ0 )−1 [1 + tanh( )](17)y0и зависимость относительного безразмерного объема аморфной фазыот бегущей безразмерной координаты−y−y−1A(y) = C(2υ0 )−1 {1 − tanh � � + �υ0 y0 coth2 � �� }yy0то0(18)С , υ0 , y0 – константы.
Поскольку y является «бегущей» координатой,выражения(14)и(15)описываютпространственно-временныезависимости (то есть кинетику для каждой фиксированной точки)температурыикристаллизации.Ониописываютволныперебросатемпературы (формула (14)) и аморфной фазы в кристаллическую (15)),распространяющиеся со скоростью V.1.6. Элементы электронной техники, для которых необходим локальныйотжиг сегнетоэлектрических микроструктурЛазерный отжиг предполагается использовать (и используется) вслучаях, когда сегнетоэлектрик входит в состав сложной интегральнойсхемы, и нагрев окружающих областей невозможен, причем это относитсякак к направлению вглубь структуры, так и в плоскости структуры.Проведенный патентный поиск выявил несколько запатентованныхрешений, касающихся процесса отжига эксимерным лазером, а такжеустройства, которое может быть создано таким образом.49В патенте США №8618593 от 31.12.3013 (I. Salama, Y.
Min, IntelCorporation, USA) предложены многослойные структуры (интегральныесхемы), которые включают отдельно созданный диэлектрик с высокойдиэлектрической постоянной, который создается методом эксимерноголазерногоотжига(220нарис.6),атакжетехнологическаяпоследовательность, обеспечивающая создание такой схемы.Рисунок 6. (a) – многослойная интегральная схема, включающаядиэлектрик (220), индивидуально отожженный эксимерным лазером;(b) – технологическая последовательность изготовления интегральнойсхемы [109].Запатентованытакжеметодикиотжигалазерногоотжигасегнетоэлектрика для создания нелинейного конденсатора, встроенного вмикросхему [110].501.7. Заключение по Главе 1. Основные задачи диссертационной работыТаким образом, основываясь на проведенном анализе литературы,можно сделать следующие выводы.Лазерный отжиг является перспективной методикой для получениясегнетоэлектрических (перовскитных) микро- и наноструктур.
Даннаяметодикаможетбытьиспользованавсистемах,гдеприменениетрадиционных методик не представляется возможным или являетсязатруднительным: например, в системах, состоящих из большого числаслоев с разными температурами плавления (размягчения). Применениелазерного отжига открывает новые возможности для разработки новыхтехнологийполучениясегнетоэлектрическихматериалов.Какбылопоказано, особенности кристаллизации перовскитной фазы в процесселазерного отжига сильно зависят от параметров используемого лазерногоизлучения (длина волны, мощность излучения, длительность импульса,размер и структура лазерного пятна в области облучения и др.).
Дляобъяснения механизмов кристаллизации и особенностей формированияперовскитной фазы существуют две основных модели, одна из которыхпредполагает, что формирование перовскитной фазы в процессе отжиганачинается на границе раздела пленки и нижнего электрода (в этом случаена параметры кристаллизации должны влиять в большей степени свойстванижнего электрода), а другая модель утверждает, что формированиеперовскитной фазы на начальных этапах отжига происходит в объемепленки (влияние толщины пленки). Выявление механизма кристаллизациипозволит повысить эффективность методики лазерного отжига.Использование для лазерного отжига фемтосекундного лазерногоизлучения имеет значительные преимущества, так как данное излучениеоказываетнаименьшеетемпературноевоздействиенаоблучаемуюповерхность.Методика генерации второй оптической гармоники, как былопоказано,обладаетуникальнойчувствительностью51ксимметрииповерхности,фазовымсегнетоэлектрическихпереходамсвойствразногоматериалов.рода,Даннаяизменениюметодикаможетуспешно использоваться для in-situ контроля процессов отжига дляустановления факта формирования перовскитной фазы, а также дляпоследующегоex-situисследованиясегнетоэлектрическихсвойствотожженных структур.
Методика ГВГ позволяет проводить данныеисследованияврамкаходнойэкспериментальнойустановки,чтозначительно снижает временные и энергетические затраты на проведениетехнологического цикла.Основываясьнапроведенноманализелитературы,можносформулировать основные задачи исследования.1. Разработать методику исследования кинетики кристаллизации insitu в процессе лазерного отжига для формирования локальных областейперовскитной фазы в сегнетоэлектрических тонких пленках цирконататитаната свинца, предварительно осажденных методом высокочастотногомагнетронногораспыленияна«холодную»платинизированнуюкремниевую подложку.2.