Печинкин, Тескин, Цветкова и др. - Теория вероятностей (1077486), страница 22
Текст из файла (страница 22)
Найдите вероятность попадания этой случайной величины в интервал (О, 2). Ответ: 1 — е е4 я~ 0 33. 4.32. Длительность времени Х безотказной работы элемента имеет экспоненцизльное распределение с параметром Л = = 0,02 ч 1. Вычислите вероятность того, что за время $ = 100 ч элемент: а) выйдет из строя; б) будет исправно работать. Ответ: а) 1 — е з ж0,865; б) е з 0,135. 4.33.
Случайная величина Х имеет нормальное распределение с параметрами гп = 2 и и = 1. Определите вероятность попадания случайной величины в интервал (1, 5). Ответ: 0,83999. 4.34. Случайная величина Х распределена по нормальному закону с параметрами т = 4 и и = 1. Определите вероятность попадания случайной величины Х в интервал (6, 8). Ответ: 0,0227. 4.35. Случайная величина Х имеет нормальное распределение с параметрами т и и. Вычислите вероятность попадания случайной величины в интервал (пз — 4о', т). Ответ: 0,499971.
4.36. Случайная величина Х подчинена нормальному закону распределения с тп = О. Вероятность попадания случайной величины в интервал (-0,3, 0,3) равна 0,5. Найдите среднее квадратичное отклонение и. Ответ: о 0,44. 153 Воиросьг и задачи 4.3Т. Измерительный прибор имеет систематическую погрешность 5 м. Случайные погрепности подчиняются нормальному закону со средним квадратическим отклонением, равным 10 м. Какова вероятность того, что погрешность измерения не превзойдет по абсолютному значению 5 м? Ответ: 0,3413. 4.38. Измерение дальности до объекта сопровождается случайными погрешностями, подчиняющимися нормальному закону со средним квадратичным отклонением, равным 50 м.
Систематическая погрешность отсутствует. Найдите: а) вероятность измерения дальности с погрешностью, не превосходящей по абсолютному значению 100 м; б) вероятность того, что измеренная дальность не превзойдет истинной. Ответ: а) 0,9545; б) 0,5. 4.39. Высотомер имеет случайную и систематическую погрешности. Систематическы погрешность равна 20 м. Случайная погрешность распределена по нормальному закону. Какую среднюю квадратичную погрешность должен иметь прибор, чтобы с вероятностью 0,9452 погр~пность измерения высоты бь|ла меньше 10 му Ответ: 50 м.
4.40. Случайны величина Х распределена по нормальному закону с математическим ожиданием пз и средним квадратичным отклонением о. Определите абсциссы и ординаты точек перегиба кривой плотности распределения. Ответ: шло; е 1~з/(а~(2~г). 4.41. Нормально распределенная случайная величина Х имеет математическое ожидание, равное нулю.
Найдите среднее квадратичное отклонение а,при котором вероятность попадания случайной величины в интервал (5, 10) была бы наибольшей. О: = ~/75Д2) 2). 164 4. ОДНОМЕРНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ 4.42. Время Х (в часах) безотказной работы электрической лампочки имеет распределение Вейбулла с параматрами а = = 0,02 и ~3 = 0,5. Определите вероятность того, что лампочка проработает не менее 10000 ч. Ответ: Р(Х ) 100001 =е ~Ли~сесе -0,14. 4.43. Время Х (в месяцах) безотказной работы некоторой системы, состоящей из одного основного и двух резервных элементов, имеет гамма-распределение с параматрами у = 3 и А = 0,05.
Найдите вероятность того, что система проработает не менее 5 лет. О т в е т: Р 1Х ) 60) = е з(1+ 3 = Зз/2) и 0,42, 5. МНОГОМЕРНЫЕ СЛ'У ЧАЙНЫЕ ВЕЛИЧИНЫ В прикладных задачах обычно приходится рассматривать не одну случайную величину, а несколько случайных величин, одновременно измеряемых (наблюдаемых) в эксперименте.
При этом с каждым элементпарным всходом ат е Й бывает связан набор числовых значений некоторых количественных параметров. В этой главе мы обобщим ранее полученные результаты на совокупность из нескольких случайных величин, задзвных на одном и том же веролптностпном простпранстпве. 5.1. Многомерная случайная величина. Совместная функция распределения Определение 5.1. Совокупность случайныя величин Хт = Хт(от), ..., Х„= Х„(ы), заданных на одном и том же веролтпностпном простпранстпве (Й,З,Р), называют многомерной (и-мерной) случайной величиной или тт-мерным случайным еектпором.
При этом сами случайные величины Хт, Хт,, Х„называют коордннатптьнн случайного вектпора. В частности, при и = 1 говорят об одномерной, при и = 2 — двумерной с.аучайной еелнчнне (или двумерном случайном вектпоре). Для и-мерного случайного вектора воспользуемся обозначе. пнями (Хм ..., Х„) и Х = (Хт, ..., Х„). В случае двумерных и трехмерных случайных векторов наряду с обозначениями (Хм Хз) и (Хы Хг, Хз) будем испольэовать также обозначения (Х, У) и (Х, У, Я). 166 5. МНОГОМЕРНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ Множество значений и-мерного случайного вектора можно отждествить с точками и-мерного линейного арифметического пространства Ж" [1У].
Замечание 5.1. Обратим внимание, что в данном выпуске в отличие от предыдущих [1У] вектор пространства й" будем обозначать матрицей-строкой. Приведем примеры случайных векторов. Пример 5.1. Отклонение точки разрыва снаряда от точки прицеливания при стрельбе по плоской цели можно задать двумерной случайной величиной (Х, у), где Х вЂ” отклонение по дальности, а 1' — отклонение в боковом направлении. При стрельбе по воздушной цели необходимо рассматривать трехмерный случайный вектор (Х, У, 2), где Х, У, Я— координаты отклонения точки разрыва зенитного снаряда от точки прицеливания в некоторой пространственной системе координат [П1].
Пример 5.2. При испытании прибора на надежность совокупность внешних воздействий в некоторый момент времени можно описать случайным вектором [Х, У, Я, ...). Здесь, например, Х вЂ” температура окружающей среды, У вЂ” атмосферное давление, 2 — амплитуда вибрации платформы, на которой установлен прибор и т.д. Размерность этого вектора зависит от количества учитываемых факторов и может быть достаточно большой. ф Свойства многомерных случайных векторов мы будем в основном изучать на примере двумерного случайного вектора, делая, если это потребуется, пояснения для случайного вектора произвольной размерности.
Напомним, что рассмотрение одномерной случайной величины начиналось с обсуждения способа задания ее закова распределения. В частности, закон распределения одномерной случайной величины можно задать с помощью фрикции распределения. То же можно сказать и по отношению к п-мерному 167 5.1. Совмеетвае фувввве реевРедееевве случайному вектору. Отметим, что в дальнейшем для пересечения событий (Х1 < х1),..., (Х„< х„) вместо записи (Х1 <х1)п...п(Х„<х„) будем использовать запись (Хт < х1,..., Х„< х„). Определение 5.2.
Фуннцией распределения (вероятпностпей) Г (Х1 ° ° °,Ха) = ГХ„...,Х„(Х1 ° ° Ха) (и-мерного) случайноео вентпора (Х1, ..., Х„) называют функцию, значение которой в точке (х1, ..., х„) е Й" равно вероятности совместного осуществления (пересечения) событий (Х1 <хт),...,(Х„<х„), т.е. Р(хт,..., х„) = Рх, ...
х„(х1,..., х„) = Р(Х1 < х1,..., Х„< х„). Функцию распределения Р(хт,...,х„) называют также совместпной (и-мерной) фуннт4ией распределения случайных величин Х1,..., Х„. В частности, при п = 1 будем говорить об одномерной, при и = 2— о двумерной функции распреде- вт лен ия. а Значение двумерной функции распределения в точке (а1, аз), согласно определению 5.2, предста- тт х а, х~ вляет собой не что иное, как вероятность попадания точки с координатами (Х1,Хз) в квадрант с вершиной в точке (а1,аз), за- Рве.
5.1 штрихованный на рис. 5.1. Свойства двумерной функции распределения, аналогичные свойствам функции распределения одномерной случайной величины, доказываются в следующей теореме. 168 5. МНОГОМЕРНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ Теорема 5.1. Двумерная функция распределения удовлетворяет следующим свойствам.
1. О < Р(хд, хг) < 1. 2. Р(хд,хг) — неубывающая функция [Ч] по каждому из аргументов хд и хг. 3. Р(-оо,хг) = Р(хд, — оо) = О 4. Р(+ос,+со) =1. 5. Р(ад < Хд < Ьд, аг < Хг < Ьг) = Р(Ьы Ьг) — Р(Ьд аг) — Р(ад Ьг)+Р(ад, аг). 6. Р(хд, хг) — непрерывнал слева в любой точке (хм хг) Е К~ по каждому из аргументов хд и хг функция. 7. Рх„х (х,+со) = Рх,(х) Рхд,х~(+со,х) = Рх (х). < Утверждения 1 и 2 доказываются точно так же, как и в одномерном случае (см. теорему 4.1). Сооыидил (Хд < -оо) и (Хг < — оо) являются невозможными, а пересечение невозможного события с любым событием, как известно, также невозможное событие, вероятность которого равна нулю. Отсюда с учетом определения 5.2 вытекает утверждение 3.
Аналогично из того, что собьипия (Хд <+оо1 и (Хг < +со) так же, как и их пересечение, являются досидовврными, вероятность которых равна единице, вытекает утверждение 4. Рис. Ь.г Чтобы найти вероятность попадания двумерной случайной величины (Хд, Хг) в прямоугольник (ад <хд <Ьд, аг <хг <Ьг) (на 169 5.1. Созместлае фуллялл раепределелил рис.