Главная » Просмотр файлов » Исаченко В.П. - Теплопередача

Исаченко В.П. - Теплопередача (1074332), страница 39

Файл №1074332 Исаченко В.П. - Теплопередача (Исаченко В.П. - Теплопередача) 39 страницаИсаченко В.П. - Теплопередача (1074332) страница 392017-12-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 39)

Здесь ы х рч =— 1 е и* ч гч* Формула (7-21) веодвократво сопостанлялась с опытнылю данными при различных значениях у, (исключая очень малые значения у внутри вязкого подслоя). Результагы соцоставлевия можно отразить, в частноств, графиком рис. 7-8. Кривая 1 соответствует линейному изменению скорости в вязком подслое: (7-22х) 193 здесь 6,— толщина вязкого подслоя: ю,=ы„(б„) — скорость на внеш- ней границе низкого водолея.Из (7-20) следует, что шх гвй гг а аг х г г агпг г г г г!Ог х г загс р е Г.а Распределение асзразкгрноа схеасстх по таыччае ттратжзгвого паграязчзего не~ е и вюва,г —,,т г г и Кривая 2 отражает логарифмическое распределение осредненной скорости в пристенной турб>лентной части пограничного слон.

В втой области ы" = — 9,6129„+4,9. Пересечению кривых 1 и 2 соответствует значение у.=-ю.р/т, примерно равное 12 Отсюда можно оценить расчетную толп!пну вязкого подслоя гы = 12 —, =! 2т !/ г (7-241 Пря больших значениях р. распределение скоростей отклоняется от логарнфмическош. Опыты показывают сложность движения в турбулентном слое— рис.

7-9. Вязкий нодслой ие имеет строго ламинарнаго течения вдоль стенки. Пульсапии, особенно крупномасштабные !низкочастотные), проникают в вязкий подслой, где их течение регламентируется вгтзкгшш силами. Движение в вязкоы подслое, вообще говоря, является нестанионарным, граншгв подслоя четке не определена.

Внешния граница вязкого подслоя является мащныы генератором пульсадионного двитхения. Наиболее высокая интенсивность турбулентности наблюдается в пристенной турбулентной области. Если, напри- 194 чер, степень турбулентности во внешнем потоке может составлять доли процента, то в пристенной области она может достигать нескольких дегяткав процентов.

Пристенная область составляет примерно 20Ъ толщины пограничного слоя (толщина вязкого подслои на один-два порядка меиыпе). Течение во внешней области пограин!ного слоя, согтавля!отпей примерно 80гй его толщины, зависит, в частности, от течения во внешнем потоке. Внешняя граница турбулентного пограничного глоя непрерывно пульсирует.

Зто связано с периодическим проникновением масс жидкости внешнего потока, где сппень турбулентности может быть невысока, во внешнюю область пограничного слоя. Такое взаимодействие пограннчногп слоя с виешиим потоком приводит к образованию области перемежаемого течения. Лналогнчно вязкому подслою непосредственно у стеакн можно выделить тепловой подслой. Он характеризуется преобладанием перегика теплоты с .' гзггг з г г гл пас . 1О Ззгипвюсгь, и Фара!хе гт-Ш! о чв~ з Пазах ля. 106 теплопроводностью над турбулентным переносом. Совпадение толщии вязкого полслоя р!'," тз леа асго ограм ю о с.аа 6 и теплового й» имеет место прн Рг=1.

д ','„„ч,„„мз„' з При Рг>1 имеем, чш Аа(ба. Последнее а ™ !г — а ча .а. Рг- г неравенство равносильно утверждению, а что а «асти аязкого подслоя от р=йа до у=ба теплота переносится не только теплопроводпосгью, но и пульсациями. Пульсации, проникающие в вязкий поделай, оназываются существенными для теплового переноса, ио не Лают значительного вклада в перенос количества движения по сравнению с молекулярным вязкост- ным переносом. Такой характер тегг чания в особенности должен про. гщ являться для очень вязких жидкое гз —- отей (Ргл 1). В предельном случае Рг С ! должна иметь место обратная карlгз тина.

Для малотеплопровопяых очень вязких сред, какими являются жидкости с большими числами Рг=- =рср/Х, тепловой подслой является г осноииым термнческпм сопротивлением. Ввиду интенсивного турбулеигного переноса толщины теплового идинамнческого пограиичныхслосв А п 6 практически совпадают.

При турбулентном течении толщина слоя 6 болыпе, чеы при ламинарном. Зто объясняется влиянием турбулентной вязкости. Поскольку в тепловом подслое перенос теплоты определяется теплопроводностйо, изменение температуры по его толщине описываетси уравнением прямой (как для плоской стенки, $2-!). Распределение температуры в подслое может быть представлено следующим обраэолс 6=рту„; !7-2'/ здесь 6=8/й„' б =д /дсгш . Распределение температуры в зоне логарифмического распрелеле пни скороши можно описать эогарнфмическнч законом: 6= — тйзр +с,(рг). (7-26) Величина сч является функцией шпала Прандтля (рис.

7-10); она учитывает изменение температуры, связанное с нсравенгтвоч толгцнн подслоев й„н б . Знание распределений скорости и температуры позволяет рассчитать тсплоотдачу с помощью интехральных уравнений теплового потока и импульса, полученных е б 7-1. Чтобы избежать громоздких выкладок, связаинык с использованием интегральных уравнений, воспользуемся упрощенным выводом. Будем при этом полагать, что Рг~!, но отличие числа Прандтлн от елиняпы не слишком велико. Исходя из линейного распределения скорости и температуры, для вязкого и теплового подслоев можно написать; э (э, дч/ 2 а Значеная э„и д„не измевяютсн по толщинам бч и й,. !Ь последних уравнений следует: хе.

э, э( а (7-27) здесь б;=Г,— /ы /,,— температура прн у=А,. т. е. на внешней граниие теплового полслоя; соответственно ю„.— скорость при у.=б; / — фнкснровавпак темпера~ура поверхности стенки. Для турбулентной части пограничного слон молекулярный перенос теплоты и количества движения можно не !шнтывать, Будем полагать также, что зшсь Рг,ы! (е,-еч). В этом случае распределение осреднепнмх скорости и температуры будут идентичны. Тогда нз уравнений (7-15) и (7-!8) следует. что в турбулентной части погранвчного слоя э//л!э .

д =аса = — ' да„/э/э Поскольку б ~б, й ~/г н б.=й, последнее уравнение запишем в энде д„=-э„с„— ' (7-хо) На травине теплового полслоя у=йч нет разрыва а величине теплового потока. Поэтому значения д, выраженные согласно уравнениям (7-27) и (7-28), можно првравнять. Пренебрежем прв этом возможнгзм разлн ~нем касательного напряжения трения з в уравнениях (7-27) и (7-28). Это различие обусловлено тем. что в общем случае кблизн стенки Ргт~! (так как йч~б ). Решим уравнения (7-27) и (7-28) относительно разностей темпе-' ратур: /,— /,= — ' — шг — а и /„— !, =- — 'ш, ! 1 — — * /!.

Суэаиируя этн уравныгия, получаем; ( -29) Согласно уравнению (7-24)З 12ч(м„, отсюда Ю м,=э —,э— =!аде„=121/ Н . (7-30> 'г г Примем, по отношение толщнн теплового и вязкого подслоев описыяаегся уравнением (7-8), полученным раисе для отношения толщины теплового и динамического пограничных слави в случае ланинарного течения: (7-3» Подставляя в (7-29) знлчепия ю и й„(б„ согласно урзвнеиияч (7-30) и (7-3!) н решая уравнение (7-29) относительно 4„ получаем: ас (г,— г„> (7-32) ..~г+ — „", ~у',(р, )~ ' Для характеристики касательгюго напряжения трения на стенке з,.

используют коэффнвдснт трения сь равный по оиределенню сг = —;„-- тй. (7-33) Подставив в (7-32) аначеннс з,=сгрыэь2 и поделив левую и правую части уравнения (7-32) на рсргэ,((э- — (,), булем иметь. еггэ 17-34) г+ >э э/ 'У (рр/3 — 1> т э Комплекс а/рсршэ беаразмерен. его называют числом Стантона и обозначают символом 3! Число Стантонз можно выразить через числа й>п, Ке н Рг 8! = — — = — — —. ин (7-Зо> йе рг гена,' При Рг=! уравнение (7-34) упрощается и принимает яид: 3! =+ (7-36) Последнее уравнение является математическим выражением аналогии переноса теплоты и количества лвижения при Рг=! и Рг,=1.

Эта аналогия впервые показана О. Рейнолыгсом (!874 г.). Форэгуаа (7-36) достаточно хорошо Вписывает теплоотдачу газов при небольших температурных напорах. Величина Рг, изменятся по толщине пограничного слоя. По данным [Уй 47) в области; где выполняется логарифмические законы распределения скорости и температуры, турбулентное число Прандтэч равно примерно 0,8 (опыты с воздухом, водой и трансформаторные маслом) . Учет этого обстоятельства приводит к формуле уй= ~ з —. (7-37) о,зз+ щ,з ! г>2(ргэм — >> В этом уравнении по сравиенину с формулой (7-34) несколько изменены некоторые постоянные.

Па рис. 7-П дано сравнеане формулы (7-37) с опытными даниымн при различных числах Прандтля. При использовании формулы (7-37) для расчета теплоотла и капельных жидкостей рекомендуется умножить полученное значение чнс- фув б итт дэ б б Ауе Я Р б В ХР Я Р В Вв Р с 7-11 тм нчетлвчн твс нм рн турбулентном псгрлннчнем слсе. п — 1.л-.:о — тп Фмм и ла 31 на поправку (Ргм/Ргс)", где приближенно п=0,25. Уточненные показатели степени и можно взять из рис. 7-!2 (Л. 47). При течении ж Бес жч ' д б в брл г "пму лм Рве. 7.12 Вл1 в перев пн стн фнв еи х в Кств нсн лима ннлммтн нн е лчстлвчу прн турбул» п~п пагрнпнмм слсе.

51,— пв формуле (7 37!. воздуха вводится поправка (Тч(ус), где т=й,23 в случае нагревания потока газа (Тс>ув). Формула (7-33) 5! — — — — т- у' 193 справедливая прн Рг=1, может быть распространена на случай Рг) ! с помощью экснериментальио определенной функции !(Рг) = Ргэм, вводимой в уравнение (7-36) как множитель. Испольэу» формулу Пранлтля о, овээ с«о,г це и вводя поправку (Ргм/Ргч)эж, получаем широко распространенную в расчетной практике формулу Ип „=0,0296Кек Ргэ' (Рг /Рг,)'*'.

Характеристики

Тип файла
DJVU-файл
Размер
4,64 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6451
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее