Решение задач терминального управления для плоских и лиувиллевых систем с учетом ограничений (1024957), страница 19
Текст из файла (страница 19)
V. 5, № 4.P. 263–265.19. Fliess M., Lévine J., Martin Ph., Rouchon P. A Lie–Bäcklund Approach toEquivalence and Flatness of Nonlinear Systems // IEEE Transactions onAutomatic Control. 1999. V. 44, № 5. P. 922–937.20. Fliess M., Lévine J. L., Martin Ph., Rouchon P. Flatness and defect of nonlinear systems: introductory theory and examples.
// International Journalof Control 61(6). 1995. P. 1327–1361.14121. Fliess M., Lévine J., Martin Ph., Rouchon P. Sur les systèmes non linéairesdifférentiellement plats // C.R. Acad. Sci. Paris. Série I. 1992. V. 315. P. 619–624.22. Grasse K., Wax N. Decomposition and Control // Journal of MathematicalAnalysis and Applications. 1987. V. 122, P. 474-484.23. Grizzle I.W., Markus S.I. The Structure of Nonlinear Control SystemsPossessing Symmetries // IEEE Transactions on Automatic Control.
1985.V. 30, № 3. P. 248–258.24. Güngör F., Torres P.J. Lie Point Symmetry Analysis of a Second OrderDifferential Equation with Singularity // Journal of Mathematical Analysisand Applications. 2017. V. 451, № 2. P. 976–989.25. Herrmann L., Broecker M. Flatness Based Control of a Ball in Tube System// IFAC-Papers OnLine. 2015.
Vol. 48, № 1, P. 790-795.26. Hirshorn R.M. (A, B)-Invariant Distributions and Disturbance Decouplingof Nonlinear Systems // SIAM Journal on Control and Optimizations. 1982.V. 19, № 1. P. 1–19.27. Hoskins J.G., Bluman G. Higher Order Symmetries and Integrating Factorsfor Ordinary Differential Equations // Journal of Mathematical Analysis andApplications. 2016.
V. 435, № 1. P. 133-161.28. Houska B., Ferreau M.J., Diehl M. ACADO Toolkit — an Open-sourceFramework for Automatic Control and Dynamic Optimization // OptimalControl Applications and Methods. 2011. V. 32, № 3. P. 298–312.29. Isidori A. Nonlinear Control Systems.
Berlin: Springer, 1995. 549 p.30. Isidori A., Krener A.J., Gori-Giorgi C., Monaco S. Nonlinear Decouplingvia Feedback: a Differential-geometric Approach // Institute of Electricaland Electronics Engineers Transactions on Automatic Control. 1981. V. 26.P.
331–345.31. Jakubczyk B.,Fliess M.,Hazewinkel,series Mathematics and ItsApplications. Algebraic and Geometric Methods in Nonlinear ControlTheory. 1986. Springer Netherlands.14232. Jos̆evski M., Abel D. Flatness-based Trajectory Planning for the BatteryState of Change in Hybrid Electric Vehicles // IFAC-Papers Online. 2016.V.
49, № 11. P. 134–140.33. Khor’kova N.G. On Some Constructions in the Nonlocal Theory of PartialDifferential Equations // Differential Geometry and its Applications. 2017.V. 54. P. 226–235.34. Klancar G., Zdesar A., Blazic S., Skrjanc I. Wheeled Mobile Robotics.
1stEdition. 2017. 502 p.35. Kolar B., Schöberl M., Schlacher K. Properties of Flat Systems with regardto the Parametrization of the System Variables by the Flat Output // IFACPapers OnLine. 2016. Vol. 49, № 18, P. 814-819.36. Kozlov R. On Symmetries of Stochastic Differential Equations //Communications in Nonlinear Science and Numerical Simulation.
2012.V. 17, № 12. P. 4947–4951.37. Krener A.J. A Decomposition Theory for Differentiable Systems // SIAMJournal on Control and Optimization. 1977. V. 12. P. 813–829.38. Krishnan J., Rajeev U.P., Jayabalan J., Sheela D.S. Optimal MotionPlanning Based on Path Length Minimisation // Robotics and AutonomousSystems. 2017. V. 94.
P. 245–263.39. Krischenko A.P., Kanatnikov A.N., Tkachev S.B. Plannind and Control ofSpatial Motion of Flying Vehicles // IFAC Workshop Aerospace Guidance,Navigation and Flight Control Systems AGNFCS’09. Samara, Russia, 2009.Режим доступа: http://lib.physcon.ru/doc?id=b502c4579298 (дата обращения 3.05.2017).40. Krohn K.B., Rhodes J.L.
Algebraic Theory of Machines I. The MainDecomposition Theorem // Transactions of the American MathematicalSociety. 1965. V. 11. P. 450–464.41. Lam D., Manzie C., Good M.C., Bitmead R.R. Receading Horizon Timeoptimal Control for a Class of Differentially Flat Systems // Systems &Control Letters. 2015.
V. 83. P. 61–66.14342. Lee E.B., Markuz L. Foundation of Optimal Control Theory // The SIAMSeries in Applied Mathematics. John Wiley & Sons. New York, London,Sydney, 1967.43. Lévine J. Analysis and Control of Nonlinear Systems: a Flatness-basedApproach // Springer, Berlin.
2009.44. Liu Q.F., Wang C. Y., Hu Y.F., Chen H. Flatness-based Feedforward andFeedback Control for Fuel Rail System of Gasoline Direct Injection Engine// IFAC-PaperOnLine. 2016. V. 49,№ 11. P. 775–780.45. Markus E.D.,Agee J.T.,Jimoh A.A. Flat Control of IndustrialRobotic Manipulators. // Robotics and Autonomous Systems. 2016. DOI:http://dx.doi.org/10.1016/j.robot.2016.10.009.46. Markus E.D., Yskander H., Agee J.T., Jimoh A.A. Coordination Controlof Robotic Manipulators using Flat Outputs // Robotics and AutonomousSystems.
2016. DOI: http://dx.doi.org/10.1016/j.robot.2016.05.006.47. Martin Ph., Murray R., Rouchon P. Flat Systems // Proceedings of the 4thEuropean Conference. Plenary Lectures and Mini-courses. 1997. P. 211–264.48. Martin P., Rosier L., Rouchon P. Controllability of the 1D SchrödingerEquation by the Flatness Approach // IFAC Proceedings Volumes.
2014.V. 47, № 3. P. 646–651.49. Masone C., Giordano P.R., Bülthoff H., Franchi A. Semi-autonomousTrajectory Generation for Mobile Robots with Integral Haptic SharedControl // 2014 IEEE International Conference on Robotics andAutomation, Hong Kong, China. 2014. P.
1–8.50. Morozov O. I. Deformed Cohomologies of Symmetry Pseudo-groups andCoverings of Differential Equations // Journal of Geometry and Physics.2017. V. 113. P. 215–225.51. Neas C.B., Farhood M. A Hybrid Architechture for Maneuver-Based MotionPlanning and Control of Agile Vehicles // IFAC Proceedings Volumes. 2011.V. 44, № 1. P.
3521–3526.14452. Nicolau F., Respondek W. Flatness of Mechanical Systems with 3 Degreesof Freedom // IFAC-Papers OnLine. 2015. V. 48, № 13. P. 019–024.53. van Nieuwstadt M.J. Trajectory Generation for Nonlinear Control Systems// Ph. D. Thesis. Caltech, Pasadena. 1996.54. Nijmeijer H. Feedback Decomposition of Nonlinear Control Systems // IEEETransactions on Automatic Control. 1983. V.
28, № 8. P. 861–862.55. Nijmeijer H. On the Input-Output Decoupling of Nonlinear Systems //Algebraic and Geometric Methods in Nonlinear Control Theory. 1986.P .101–119.56. Nijmeijer H., van der Schaft A.J. Partial Symmetries for Nonlinear Systems// Mathematical systems theory Journal. 1985. V. 18. P. 79–96.57. Popescu L. Symmetries of Second Order Differential Equations on LieAlgebroids // Journal of Geometry and Physics.
2017. V. 117. P. 84–98.58. Rams H., Schöberl M., Schlacher K. Local Decomposition And Accessibilityof Nonlinear Infinite-Dimensional Systems // IFAC-Papers OnLine. 2016.Vol. 49, № 8, P. 168-173.59. Respondek W. Global Aspects of Linearization, Equivalence to PolynomialForms and Decomposition of Nonlinear Control Systems // Algebraic andGeometric Methods in Nonlinear Control Theory. 1986. P .257–284.60. Respondek W. On Decomposition of Nonlinear Control Systems // Systems& Control Letters. 1982.
V. 1. P. 301–308.61. Rigatos G., Siano P., Tir Z., Hamida M.A. Flatness-based AdaptiveNeurofuzzy Control of Induction Generators Using Output Feedback //Neurocomputing. 2016. V. 216. P. 684–699.62. Saldivar B., Knüppel T., Wolttendek F., Boussada I., Mounier H., NiculescuS.I. Flatness-based Control of Torsional-Axial Coupled Drilling Vibrations// Proceedings of the 19th World Congress IFAC. 2014. P. 7324–7329.63.
Sagert C., Meglio F. Di., Krstic M., Rouchon P. Backstepping and FlatnessApproaches for Stabilization of the Stick-Slip Phenomenon for Drilling //1455th IFAC Symposium on System Structure and Control, Grenoble, France,February, 2013.64. Sira-Ramirez H., Ageawal S.K. Differentially Flat Systems. New York:Marcel Dekker, 2004. 468 p.65. Sira-Ramirez H., Castro-Linares R., Liceaga-Castro E. A Liouvillian SystemsApproach for the Trajectory Planning-based Control of Helicopter Models// Int.
J. Robust Nonlinear Control. 2000. V. 10. P. 301–320.66. Suryawan F., Dona J.D., Seron M. Flatness-based Minimum-time TrajectoryGeneration for Constrained Linear Systems Using B-Splines // Proceedingsof the 18th World Congress IFAC. 2011. P. 6674–6679.67. Taalmallah S., Bombois X., Van der Hof P. Trajectory Planning andTrajectory Tracking for a Small-Scale Helicopter in Autorotation // ControlEngineering Practice. 2017. V.
58. P. 88–106.68. Tabuada P., Pappas G.J. Hierarchical Trajectory Generation for a Class ofNonlinear Systems // 42nd IEEE Internetional Conference on Decision andControl. 2004. P. 6090–6095.69. Tabuada P., Pappas G.J. Quotients of Fully Nonlinear Control Systems //SIAM Journal on Control and Optimization. 2005. V. 43, P. 1844–1866.70. Verscheure D., Demeulenaere B., Swevers J., De Schutter J., Diehl M. Timeoptimal Path Tracking for Robots: a Convex Optimization Approach //IEEE Transactions on Automatic Control. 2009. V. 54, № 10.