Lektsii (1021712), страница 7

Файл №1021712 Lektsii (Конспект лекций) 7 страницаLektsii (1021712) страница 72017-07-10СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 7)



Рис. 8.4. Расчетный элемент бруса



Рис. 8.5. Фрагмент расчетного элемента бруса

по ширине элемента b. Нормальные напряжения и , действующие на торцевых площадках элемента, также заменим их равнодействующими

,

.

Согласно первой предпосылке нормальные напряжения определяются уже известным способом, , где статический момент отсеченной части площади поперечного сечения относительно оси Ох.

Рассмотрим условие равновесия элемента (рис. 5) составив для него уравнение статики :

откуда после несложных преобразований, учитывая, что

получаем формулу для касательных напряжений при нормальном поперечном изгибе призматического стержня которая называется формулой Журавского:



Рис. 8.6. Распределение касательных напряжений по контуру прямоугольного сечения

В этой формуле by ширина сечения в том месте, где определяются касательные напряжения, а статический момент, подставляемый в эту формулу, может быть вычислен как для верхней, так и для нижней части (статические моменты этих частей сечения относительно его центральной оси Ох отличаются только знаком, так как статическим момент всего сечения равен нулю).

В качестве примера применения формулы Журавского построим эпюру касательных напряжений для случая прямоугольного поперечного сечения балки (рис. 8.6.). Учитывая, что для этого сечения

получаем

где F=bh—площадь прямоугольника.

Как видно из формулы, касательные напряжения по высоте сечения меняются по закону квадратичеокой параболы, достигая максимума на нейтральной оси

Сделаем несколько замечаний, касающихся расчетов на прочность при прямом поперечном изгибе. В отличие от простых видов деформации, когда в поперечных сечениях стержня возникает лишь один силовой фактор, к которым относятся и изученные выше растяжение (сжатие) и чистый изгиб, прямой поперечный изгиб должен быть отнесен к сложным видам деформации. В поперечных сечениях стержня при поперечном изгибе возникают два силовых фактора: изгибающий момент Мх и поперечная сила Qy (рис. 8.7), напряженное состояние является упрощенным плоским, при котором в окрестности произвольно выбранных точек поперечного сечения действуют нормальные и касательные напряжения. Поэтому условие прочности для таких точек должно быть сформулировано на основе какого-либо уже известного критерия прочности.

Однако учитывая, что наибольшие нормальные напряжения возникают в крайних волокнах, где касательные напряжения отсутствуют (рис. 8.7), а наибольшие касательные напряжения во многих случаях имеют место в нейтральном слое, где нормальные напряжения равны нулю, условия прочности в этих случаях формулируются раздельно по нормальным и касательным напряжениям



Рис. 8.7. Распределение нормальных и касательных напряжений по контуру сечения



Рис. 8.8. Эпюры перерезывающей силы и момента

Покажем, что доминирующая роль в расчетах на прочность балки, подвергнутой поперечному изгибу, будет принадлежать расчету по нормальным напряжениям. Для этого оценим порядок max и max на примере консольной балки, показанной на рис. 8.8:

так как

Тогда

откуда max <<max , а поскольку то доминирующим в этом случае будет расчет по нормальным напряжениям и условие прочности, например, для балки из пластичного материала, работающей на прямой изгиб, как и в случае чистого изгиба будет иметь вид:

Глава 9. Эпюры внутренних силовых факторов при изгибе.

Допустим, что внешние силы приложены перпендикулярно продольной оси бруса (балки) и расположены в одной из главных плоскостей в соответствие с конфигурацией поперечного сечения балки (прямой изгиб).

Как известно, в этом случае в поперечном сечении возникают два вида внутренних усилий: поперечная сила и внутренний изгибающий момент.

Рассмотрим пример расчетной схемы консольной балки с сосредоточенной силой Р, рис. 9.1.

а) расчетная схема, б) левая часть, в) правая часть, г) эпюра поперечных сил, д) эпюра изгибающих моментов

Рис. 9.1. Построение эпюр поперечных сил и внутренних изгибающих моментов при прямом изгибе:

Вычислим реакции в заделке на базе уравнений равновесия:

После мысленного рассечения балки нормальным сечением 1—1 рассмотрим равновесие левой отсеченной части (рис. 9.1 б), получим:

Таким образом, на первом участке поперечная сила отрицательная и постоянная, а внутренний изгибающий момент изменяется по линейному закону.

Для правой отсеченной части при рассмотрении ее равновесия результат аналогичен рис. 9.1 в. А именно:

На основании полученных значений строятся эпюры поперечных сил (рис. 9.1 г) и внутренних изгибающих моментов (рис. 9.1 д).

Как следует из построенных эпюр , а в сечении жесткой связи. Именно это сечение и является наиболее опасным в данной расчетной схеме.

Замечание по поводу косого изгиба балки

Вид деформации является сложным, когда в поперечном сечении балки возникают два и более силовых факторов. Сложный вид деформации можно рассматривать как сумму простых видов, изученных ранее (растяжение, изгиб, кручение), если применим принцип независимости действия сил (частный случай принципа суперпозиции или наложения, применяемый в механике деформируемого твердого тела).

Напомним формулировку принципа независимости действия сил: напряжение (деформация) от нескольких сил равно сумме напряжений (деформаций) от каждой силы в отдельности. В задачах линейной теории упругости этот принцип становится неприменимым, если:

  • напряжения в какой-либо части конструкции от одной из сил или группы сил превышают предел пропорциональности ;

  • деформации или перемещения становятся настолько большими, что нарушается линейная зависимость между ними и нагрузкой.

Например, дифференциальное уравнение изгиба стержня является нелинейным и вытекающая из него зависимость прогиба f от нагрузки Р для консольной балки, изображенной на рис. 1, а, также является нелинейной (рис. 9.1, б). Однако, если прогибы балки невелики (f<<l) настолько, что (dy/dz)2<<1, то дифференциальное уравнение изгиба становится линейным (как видно из рис. 1, б, начальный участок зависимости Р от f, описываемый этим уравнением, также является линейным).





а) расчетная схема б) линейное и нелинейное сопротивления


Рис. 9.2. Модели изгиба балки:

Известно, что косой изгиб имеет место, когда силы, его вызывающие, не лежат в одной из главных плоскостей инерции. Однако, если разложить внешние силы по главным осям инерции Ох и Оу, то получим две системы сил, каждая из. которых вызывает прямой изгиб с изгибающими моментами соответственно My и Мx. Применяя принцип независимости действия сил, нормальные напряжения определим как алгебраическую сумму напряжений от Mx и Мy:

Прогибы балки определим как геометрическую сумму прогибов от прямых изгибов.

.

Таким образом, расчет на косой изгиб с применением принципа суперпозиции действия сил сводится к расчету на два прямых изгиба с последующим алгебраическим суммированием напряжений и геометрическим суммированием прогибов.

Глава 10. Напряжения и деформации при кручении стержней кругового поперечного сечения

Кручением называется такой вид напряжённого состояния, при котором в поперечном сечении стержня возникает лишь один силовой фактор — крутящий момент Мz. Крутящий момент по определению равен сумме моментов внутренних сил относительно продольной оси стержня Oz. Нормальные силы, параллельные оси Oz, вклада в крутящий момент не вносят. С силами, лежащими в плоскости поперечного сечения стержня (интенсивности этих сил — касательные напряжения и ) Мz связывает вытекающее из его определения уравнение равновесия статики (рис. 10.1)

Условимся считать Mz положительным, если со стороны отброшенной части стержня видим его направленным против часовой стрелки (рис. 10.2). Это правило проиллюстрировано на рис. 1 и в указанном соотношении, где крутящий момент Мz принят положительным. Численно крутящий момент равен сумме моментов внешних сил, приложенных к отсеченной части стержня, относительно оси Ог.



Рис. 10.1. Связь крутящего момента с касательными напряжениями



Рис. 10.2. Иллюстрация положительного и отрицательного крутящего момента

Характеристики

Тип файла
Документ
Размер
3,77 Mb
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6548
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее