Жидкостные ракетные двигатели Добровольский М.В. (1014159), страница 9
Текст из файла (страница 9)
22. Таким образом, на режимах, соответствующих режигасч Расч ) уасч Рис. 2. 23. Характеристика изменения тяги для различных типов сопел: 1 — идеально регулируемое сопло; у — сопле с аентральиым телом; а — круглое сопло с отрыаом потока; Ч вЂ” круглое сопло без огрыза по. тона; а — расчетныа ремам мам перерасширения для обычного сопла, при работе сопла с центральным телом перерасширения не происходит. Поток расширится только до давления, равного давлению окружающей среды. Площадь выходного сечения потока при работе с (ра*/рн)'ы< (ра*/рн)расч уменьшится и будет равна площади потока в сечении пс — пт. Тяга двигателя, имеющего сопло с центральным телом, работающее при отношении давлений (рз*/ри) "'< (рт"/р,г) раса будет соответствовать расчетному режиму двигателя, работающего со степенью расширения (рз*/рн)"', т.
е. (2. 32) ГДЕ СНЗ вЂ” СКОРОСТЬ, СООтВЕтСтВУЮЩаЯ ДаННОМУ ОТНОШЕНИЮ (Рт*/Рн) "'. Таким образом, при уменьшении отношения давлений рае/рн ниже расчетного тяга двигателя с соплом с центральным телом будет соответствовать тяге двигателя с круглым идеально регулируемым соплом. Поэтому сопла с центральным телом со свободной поверхностью расширения часто называют саморегулирующимися сопла ми. Характеристика изменения тяги сопла с центральным телом прн работе с (Рз*/Рн) лг< (Рте/р ) расч в соответствии с уравнением (2. 32) пойдет выше характеристики обычного сопла, в котором из-за перерасширення потока будет резко падать тяга.
Следует отметить, что при нерасчетных режимах работы двигателя с соплом с центральным телом, кроме изменения скорости (из-за изменения рз*/рн), происходит также отклонение направления движения потока от осевого. Это приводит к некоторым потерям тяги на рассеивание, вследствие чего характеристика сопла с центральным телом пройдет ниже характеристики круглого идеально регулируемого сопла. Сопло с частичным внутренним расширением На рис. 2.1, д дана схема сопла с центральным телом с части чаым внутренним р асши реп нем. Такие сопла являются промежуточным типом между кольцевым соплом и соплом с центральным М,< М4с Ла Рис. 2.
24. Изменение угла поворота потока и положения поверх- ности критической скорости ОА в зависимости от числа М телом и внешним расширением, Применение их целесообразно в тех случаях, когда сопло с центральным телом должно обеспечить разгон потока до больших чисел М, т. е. при больших отношения рз*/р„. Дело в том, что в сопле с полным внешним расширением при увеличении рз /р„ увеличивает- а с ся угол поворота потока оз.
При значе- ./ няях рз"/р„, соответствующих значени- р. ! ям М порядка 3,6 — 4,2 (в зависимости от показателя пн,), угол поворота по// ! тока достигает 90' и растет с дальней- ! шим увеличением рз"/р, (рис. 2. 24). Так как необходимо обеспечить до- /зт статочно плавный разгон продуктов сгорания до скорости звука, очевидно, что с увеличением угла поворота по- ° и ' /расч тока будет увеличиваться и диаметр кольцевой камеры сгорания, т.
е. габа - р Рис. 2. 25. Характеристика сопла с н е . риты и вес в сего двигател я . Поэтому полным внутренним расширением при больших рзз/рн для уменьшения угла поворота потока (а следовательно, и габаритов двигателя) целесообразно применять предварительное расширение в кольцевом сопле до некоторой скорости Мз (1<Мз<Мз). Рассмотрим, как пройдет характеристика изменения тяги для сопла с частичным внутренним расширением (рис.
2. 25). Для сопла с расчетным соотношением давлений, равным (рз*/р,)Пр„„характеристика П прп полном внутреннем расширении (обычное крузлое сопло) пойдет по кривой есс(, при полном внешнем расширении — по дЬсс(. Для сопла с полным внутренним расширением. рассчитанным на (рз*/рн)1ра,„характеристика ! пойдет по кривой аЬ/. Прн применении сопла с частичным внутренним и дальнейшим внешним 49 расширением изменение тяги при увеличении рва/ра до 1раа/р )1р„, будет идти по характеристике 1. Однако при дальнейшем увеличении раа/ри сопло будет работать как сопло с внешним расширением и характеристика пойдет по линии Ьсс/.
Таким образом, кривая аЬсс/ будет характеристикой изменения тяги сопла с частичным внутренним расширением. Тарельчатое сопло В тарельчатом сопле 1см. рис. 2. 1,ж, 2. 21, 2. 26) кольцевое критическое сечение сопла располагается ближе к оси сопла, что позволяет уменьшить размеры камеры сгорания. Продукты сгорания вытекают из критического сечения, расходясь в направлении от оси. При течении вдоль внешнего контура сопла ОС поток поворачивает в направлении вдоль оси. Расширение газа происходит при обтекании кромки А та- Рис. 2. 26. двигатель с тарельчатым соплом [551 ,та=я (Йс /сл). 12.
33) На рис. 2. 27 показано расположение свободной внутренней поверхности потока в тарельчатом сопле для различных соотношений да*/р '. а) расчетное соотношение; б) недорасширение; в) режим, соответетвующий режиму перерасширения. При гргв(Рв') <г/гав(ргг')раса так же, как и в случае сопла с центральным телом, на участке тС давление на стенку сопла при переходе через систему отраженных волн может несколько возрасти. В отличие от сопла с центральным телом и внешней свободной поверхностью в тарельчатом сопле в связи с тем, что р„'<р„, возможно некоторое перерасширение потока у стенки сопла до давления р„'<р„ рельчатого центрального тела.
Свободной поверхностью является внутренняя граница потока, контур которой определяется давлением р„' у торца тарельчатого центрального тела. В общем случае это давление несколько меньше давления окружающей среды рп в связи с эжектированием потока из центральной области сопла. Площадь выходного сечения тарельчатого сопла, работающего на расчетном режиме, равна т. е. в тарельчатом сопле, может появиться отрицательная составляющая тяги за счет перерасширения. Однако величина такого перерасширения невелика и в первом приближении можно принимать, что и в тарельчатом сопле перерасширенне 4 ! н/засч а/еасч рх ря/расч сс Рис.
2. 2?. Изменение свободной поверх. ности расширения и давления вдоль контура ОтС при различных режимах рабо- ты тарельчатого сопла отсутствует. В этом случае характеристика изменения тяги в зависимости от р."/ря для тарельчатого сопла будет определяться теми же уравнениями, что и для сопла с центральным телом, и пройдет, как показано иа рис. 2. 23. 2 9.
РАСЧЕТ СОПЕЛ С ЦЕНТРАЛЬНЫМ ТЕЛОМ Рассмотрим приближенный способ построения контура сопел с центральным телом. Для упрощения расчета допустим, что расширение потока в сопле происходит, как при плоском течении Прандтля — Майера. Поэтому при расчете расширения потока за кромкой А будем считать применимыми зависимости, полученные для плоского течения. Расчет сопла с центральным телом с внешним расширением Считаем, что нам известны топливо, т.
е. и „, температура Тз и давление в камере рь а также степень расширения рз/рз" (или, что одно и то же, М,). Дозвуковую часть сопла проектируем так, чтобы на кромке сопла в точке А установилась критическая скорость, т, е. Мл=!. Тогда ОА — поверхность критической скорости (рис. 2.28). б! Определим положение кромки А и угол наклона кромки. При обтекании кромки образуется пучок волн разрежения. При расчетном режиме по условиям работы сопла направление потока на границе свободной поверхности АС' должно совпадать с направлением оси сопла.
Для этого угол озз наклона касательной А е к контуру в точке А должен быть равен углу поворота потока при разгоне потока от Мл=1 до заданной скорости М, (т. е. при расширении потока до рз=рн): ы, = ) г "' агс18' 1 г — Мз — 1 — агс1о 'р Мз — 1 (2 34) низ+1 — ~низ 1 з т/ 'з )/ низ+ з Рнс. 2. 28. К расчету контура сопла с центральным телом; ! †о сопла; 3 †свободн поверхность Расстояние кромки А от оси сопла равно радиусу выходного сечения тсз и определяется по формуле (1.
21), — ~/ ( ' (~е"", 'м,')("-' (2. 35) где из — — (~е"" 'м)(" пнз 1 ан" низ+1 (2. 37) (2. 38) У =пД~ (2. 36) н Г', определяется по соотношению (!.42). Лля построения контура центрального тела ОС найдем положение произвольной точки В на контуре центрального тела. В точку В попадет промежуточная волна разрежения АВ. Скорость потока ш (или М) вдоль волны разрежения (характеристики) АВ постоянна.
Сечение потока 1', в котором скорость равна нз, определится как проекция боковой поверхности усеченного конуса, образованного вращением отрезка АВ вокруг оси сопла, иа плоскость, нормальную к скорости. Площадь сечения потока г' и угол го между направлением потока и касательной АЕ определяются соотношениями: Угол а между направлениями характеристики АВ и скорости ш (угол Маха) определится соотношением з1па= —, 1 (2.