Определение напряжений при косом изгибе стержня
Определение напряжений при косом изгибе стержня
Косым изгибом называется такой вид изгиба, при котором плоскость нагрузки (силовая линия) изгибающего момента не совпадает ни с одной из главных осей инерции поперечного сечения стержня X, Y (рис. 7.1, а, б). |
При косом изгибе действующие внешние силы (моменты) представляют их проекциями на главные оси поперечного сечения (рис. 7.1, б), тем самым сводят задачу к случаю поперечного изгиба в двух главных плоскостях. Из рис. 7.1, а, б видно, что: |
|
Изгибающие моменты в расчетном сечении: |
|
При выбранном направлении главных центральных осей инерции положительным октантом будет первый октант (на рис. 7.1, а, б заштрихован). |
|
|
Рекомендуемые материалы-52% Определение момента инерции маятника максвелла Голография и ее практическое применение FREE Определение динамической вязкости жидкости по методу Стокса FREE Определение моментов инерции тел. Определение момента инерции маятника Максвелла FREE Дулин В.Н. Электронные приборы 1977 FREE Проект источника теплоснабжения для промышленного предприятия и жилого района расположенных в Иркутской области Рис. 7.1 |
Правило знаков. Изгибающие моменты в расчетном поперечном сечении считаются положительными, если они вызывают в первом (заштрихованном) октанте напряжения растяжения. |
Нормальные напряжения в точках поперечного сечения с текущими координатами х, у определяются алгебраической суммой напряжений, вызываемых изгибающими моментами Мx и Мy: |
|
где Jx и Jy — моменты инерции поперечного сечения относительно главных, центральных осей инерции сечения X, Y, т. е. изменяются по линейному закону. Уравнение нейтральной (нулевой) линии в сечении найдем, приравняв |
Ответы совпали. |
|
При х = 0 значение у = 0, т. е. прямая с угловым коэффициентом k проходит через центр тяжести поперечного сечения. |
При косом изгибе нейтральная линия представляет собой прямую, которая не перпендикулярна к плоскости изгибающего момента , или, что одно и то же, к силовой линии. |
Силовая линия наклонена к оси X под углом а, следовательно, ее угловой коэффициент равен: |
|
Угловой коэффициент нейтральной линии: |
|
Так как в общем случае Jx не равно Jy, то и k1 не равно — 1/k, следовательно, нулевая длина не перпендикулярна силовой линии, а повернута в сторону главной оси минимального момента инерции. |
Нейтральная линия разделяет поперечное сечение на две зоны: |
|
Максимальные по величине напряжения растяжения возникают в точке А с координатами Xa, Yл, а максимальные напряжения сжатия возникают в точке В с координатами XВ, YВ (рис. 7.1, в): |
|
Получим эпюру нормальных напряжений в расчетном сечении (7.1, в). |
Условие прочности. Если материал стержня одинаково работает на растяжение и на сжатие, то условие прочности записывается в виде: |
|
Если материал стержня работает на растяжение и на сжатие не одинаково, то расчет проводится раздельно, т. е. проверяются условия прочности: |
|
Для поперечных сечений, имеющих две оси симметрии: |
|
где Wx, Wy — момент сопротивления поперечного сечения относительно главных, центральных осей инерции X, Y. |
Прогибы при косом изгибе. Прогиб конца консоли от действия Рx направлен по оси X и равен: |
|
Прогиб от действия Рy направлен по оси Y и равен: |
|
Модуль полного прогиба конца консоли |
|
Угол наклона вектора f к оси X |
Вместе с этой лекцией читают "Список литературы". |
т. е. угловой коэффициент |
|
перемножив k на k2 получим: |
|
что свидетельствует о том, что нулевая линия и направление полного прогиба взаимно |