Популярные услуги

Определенные интегралы (всех вариантов)
Любая задача по линалу
Контрольная работа по рядам (КМ-3) ИДДО 2022
Любая задача по математическому анализу и по интегралам и дифференциальным уравнениям
КМ-3 Важнейшие аспекты теории графов - любой вариант за 3 суток!
Сдам любой тест по дискретке в течение суток на положительную оценку!
Предельные теоремы и математическая статистика
НОМОТЕХ
Любая задача по Линейной алгебре и аналитической геометрии
Теория функций комплексного переменного

Знакопеременные ряды

2021-03-09СтудИзба

Лекция 12. Знакопеременные ряды.

Ряд называется знакопеременным, если среди членов ряда содержится бесконечное количество отрицательных членов и бесконечное количество положительных членов.

Ряд называется абсолютно сходящимся, если ряд из модулей членов ряда  сходится.

Теорема. Если ряд  абсолютно сходится, то он сходится.

Доказательство. Так как ряд  сходится, то ряд  тоже сходится. Ряд - знакоположительный, так как  и сходится по первому признаку сравнения рядов по сравнению со знакоположительным рядом , так как . Вычитая из сходящегося ряда  сходящийся ряд , получаем сходящийся ряд (свойство сходящихся рядов) .

Теорема о перестановке членов в абсолютно сходящихся рядах.

Пусть ряд абсолютно сходится, тогда его члены можно переставлять, получая абсолютно сходящийся ряд с той же суммой.

Рекомендуемые материалы

Доказательство. Обозначим s - сумму ряда  ,  S – сумму ряда .

Рассмотрим ряд .  Он знакоположительный, так как . Он сходится по первому признаку сравнения рядов по сравнению со знакоположительным рядом , так как . Его сумма равна s + S.

Пусть ряд получен перестановкой членов из .

Тогда знакоположительный ряд  получен перестановкой членов из . По теореме Дирихле он сходится и имеет ту же сумму S.

Знакоположительный ряд  получен перестановкой членов из ряда . Следовательно, по теореме Дирихле, он сходится и имеет ту же сумму S + s.

Вычитая из сходящегося ряда  сходящийся ряд , мы получим ряд . По свойствам сходящихся рядов он сходится и имеет сумму, равную (S + s) – S = s.

Следовательно, ряд , полученный при перестановке членов ряда , сходится и имеет ту же сумму, что и ряд .

Ряд называется условно сходящимся, если ряд из модулей членов ряда  расходится, а сам ряд сходится.

Теоремы о структуре знакопеременных рядов.

Обозначим - положительные члены, - отрицательные члены знакопеременного ряда. A – ряд , Am – ряд , P – ряд , Po – ряд A, в котором все отрицательные члены заменены нулями на тех же местах. Q – ряд , Qo – ряд A, в котором все положительные члены заменены нулями на тех же местах.

Пример

A      

Am   

Po     

P       

Qo     

Q       

Теорема Ряды P, Po, ряды Q, Qo сходятся или расходятся одновременно.

Доказательство. Так как ряд знакопеременный, то два последовательных положительных члена  отделяет друг от друга конечное число отрицательных членов. То же верно и для последовательных отрицательных членов. Пусть первая серия нулей в Po:  Тогда , т.е. k элементов в последовательности частичных сумм повторяются. Исключим их из последовательности и перенумеруем члены (это соответствует исключению серии нулей). Исключение последовательных одинаковых элементов  не влияет на сходимость и предел последовательности. Далее доказательство можно провести по индукции, так как операция исключения нулей аналогична. Поэтому ряды Po и P сходятся или расходятся одновременно. Аналогичное верно и для Qo и Q.

Теорема. Если P сходится, Q – сходится, то Am сходится, т.е. ряд A сходится абсолютно.

Доказательство. Так как P сходится, то Po сходится, так как Q – сходится, то Qo – сходится. Складывая сходящиеся ряды Po и (-Qo) почленно (учитывая, что ), получим сходящийся ряд. Это – ряд Am.

Теорема. Если P сходится и Q расходится или P расходится и Q сходится, то A расходится.

Доказательство. Рассмотрим один из вариантов. Пусть P сходится и Q расходится.

Тогда Po сходится. Будем доказывать от противного. Пусть A сходится, тогда, вычитая из него сходящийся ряд Po, получим сходящийся ряд Qo. Тогда по доказанной выше теореме ряд Q сходится. Противоречие.

Второй вариант P расходится и Q сходится рассматривается аналогично.

Теорема. Пусть ряд A условно сходится, тогда ряды P, Q расходятся.

Доказательство. Если P, Q оба сходятся, то по доказанной выше теореме Am сходится, т.е. ряд A сходится абсолютно. Противоречие.

Если P сходится и Q расходится или P расходится и Q сходится, то A расходится.(по доказанной выше теореме). Противоречие.

Следовательно, оба ряда P, Q расходятся.

Итак, получена следующая схема.

.

Эта схема отражает суть теорем о структуре знакопеременных рядов.

Пример.

P:   - сходящаяся бесконечно убывающая геометрическая прогрессия.

Q:    сходящаяся бесконечно убывающая геометрическая прогрессия. Следовательно, исходный ряд A абсолютно сходится.

Пример.

P:   - сходящаяся бесконечно убывающая геометрическая прогрессия.

Q:   расходящийся ряд (по второму признаку сравнения с гармоническим рядом). Следовательно, исходный ряд A расходится.

Теорема Римана.

Пусть S – произвольное число (конечное или бесконечное). Тогда можно так переставить местами члены условно сходящегося знакопеременного ряда, что его сумма будет равна S.

Доказательство. Так как ряд A условно сходится, то ряды P, Q расходятся (теоремы о структуре знакопеременного ряда). Пусть для определенности S>0. Переставляем в начало ряда столько положительных членов, чтобы их сумма стала  больше S, Теперь переставляем столько отрицательных членов, чтобы частичная сумма ряда стала бы меньше S. Повторяем этот процесс. Процесс осуществим для любого S, так как ряды P, Q расходятся (т.е. повторением членов можно набрать любую их сумму). С другой стороны, частичная сумма сконструированного ряда сходится именно к S. В сконструированном ряде   - тот член ряда, добавление которого меняет знак . так как знакопеременный ряд условно сходится.

Сам ход доказательства напоминает добавление положительных членов – гирь на одну чашку весов, пока весы не покажут вес, больший S. Последний член – гиря . Затем добавление на другую чашку весов столько отрицательных – членов (вернее гирь, весом, равным модулям этих членов), чтобы весы показали вес, меньший S. Процесс повторяется. Вес гирь, вызывающих переход указателя весов через S, убывает до нуля, так как для условно сходящегося ряда выполняется необходимый признак сходимости. Поэтому .

Знакочередующиеся ряды.

Знакопеременный ряд называется знакочередующимся, если знаки членов ряда чередуются, т.е. ряд имеет вид  . Предполагаем, что ряд начинается с положительного члена, .

К знакочередующимся рядам можно применить все теоремы, доказанные выше для знакопеременных рядов. Но есть специальный, очень удобный достаточный признак сходимости знакочередующихся рядов – признак Лейбница (он не является необходимым признаком).

Признак Лейбница.

Пусть

1. ряд имеет вид    (знакочередующийся, )

2. последовательность монотонно убывает

3.

Тогда  1) ряд сходится

            2)

Доказательство. Рассмотрим последовательность частичных сумм с четными номерами

(последовательность  монотонно убывает по условию теоремы).

Т.е. последовательность  ограничена сверху  .

Т.е. последовательность монотонно возрастает.

По теореме Вейерштрасса существует .

Рассмотрим теперь последовательность частичных сумм с нечетными номерами

.

По условию , т.е. .

По доказанному выше . Следовательно, предел правой части равенства существует и равен . Поэтому предел левой части равенства тоже существует и равен

.

Раскроем определение предела  как для четных n, так и для нечетных n. Следовательно, это справедливо для любых , поэтому .

Из доказанного выше неравенства  . Переходя к пределу, получим .

Информация в лекции "3 Решение систем линейных алгебраических уравнений итерационными методами" поможет Вам.

Следствие. . Остаток ряда оценивается модулем первого отброшенного члена ряда.

Доказательство. Так как остаток знакочередующегося ряда тоже знакочередующийся ряд, то его сумма по признаку Лейбница оценивается модулем его первого члена.

То есть . А первый член остатка ряда и есть первый отброшенный член.

Пример. Ряд

. Ряд сходится по признаку Лейбница. Ряд из модулей – расходящийся гармонический ряд. Следовательно, ряд сходится условно.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5140
Авторов
на СтудИзбе
442
Средний доход
с одного платного файла
Обучение Подробнее