Теорема о вычетах
Теорема о вычетах.
Теорема. Пусть функция f(z) – аналитическая на всей плоскости z, за исключением конечного числа точек z1, z2, …, zN. Тогда верно равенство:

А интеграл от функции по контуру L, содержащему внутри себя эти точки, равен

Эти свойства применяются для вычисления интегралов. Если функция f(z) аналитическая в верхней полуплоскости, включая действительную ось, за исключением N точек, то справедлива формула

Пример. Вычислить определенный интеграл
.
Подынтегральная функция является аналитической в верхней полуплоскости за исключением точки 2i. Эта точка является полюсом второго порядка.
Рекомендуемые материалы
Найдем вычет функции 

"6. Иммуннология" - тут тоже много полезного для Вас.
Получаем 
Пример. Вычислить определенный интеграл 
Подынтегральная функция является аналитической в верхней полуплоскости за исключением точки i. Эта точка является полюсом второго порядка.
Найдем вычет функции

Получаем 






















