Главная » Все файлы » Просмотр файлов из архивов » PDF-файлы » Физические основы квантовых вычислений

Физические основы квантовых вычислений, страница 4

PDF-файл Физические основы квантовых вычислений, страница 4 Квантовые вычисления (53252): Книга - 7 семестрФизические основы квантовых вычислений: Квантовые вычисления - PDF, страница 4 (53252) - СтудИзба2019-09-18СтудИзба

Описание файла

PDF-файл из архива "Физические основы квантовых вычислений", который расположен в категории "". Всё это находится в предмете "квантовые вычисления" из 7 семестр, которые можно найти в файловом архиве МГУ им. Ломоносова. Не смотря на прямую связь этого архива с МГУ им. Ломоносова, его также можно найти и в других разделах. .

Просмотр PDF-файла онлайн

Текст 4 страницы из PDF

Действительно,поскольку вид оператора определяется из условия соответствия его среднего значения физической величине, имеем:b =hΨ(t)|A|Ψ(t)ibhAi=b (t, 0)|Ψ(0)i = hAbH (t)i.=hΨ(0)|U + (t, 0)AU(5.8)bH (t) = U + (t, 0)AUb (t, 0) – оператор в представленииЗдесь AГайзенберга.Как видим, в представлении Гайзенберга оператор обязательно зависит от времени, даже если в представленииШредингера он от времени не зависел. Таким образом, поскольку в представлении Гайзенберга вектор состояния независит от времени, вся временная эволюция квантовой системы переносится на операторы.

Поэтому следует напи-29сать уравнение движения для операторов:µ¶d b∂ bAH (t) = U + (t, 0)A U (t, 0)+dt∂tµ¶µ¶∂ +∂+bb+U (t, 0) AU (t, 0) + U (t, 0)AU (t, 0) .∂t∂t(5.9)Легко видеть, что оператор эволюции подчиняется уравнению∂b (t, 0).i~ U (t, 0) = HU(5.10)∂tПоэтому получаем уравнение Гайзенберга, определяющееизменение операторов во времени и "заменяющее"уравнениеШредингера для вектора состояния:bH (t)bHdA∂Ai hb b iH, AH .=+dt∂t~(5.11)Упражнения.1. Найти в представлении Гайзенберга операторы координаты и импульса свободной частицы.2. Найти оператор спина электрона в однородном магнитном поле B в представлении Гайзенберга.

Считать, чтодругих взаимодействий, изменяющих спиновое состояниеэлектрона нет.1.6Представление взаимодействияПредставление взаимодействия широко используется прирешении нестационарных задач теории возмущений, когдагамильтониан системы имеет видb =Hb 0 + Vb (t)H30(6.1)Очевидно, стационарня задача, когда возмущение от времени не зависит Vb (t) = Vb (0) представляется частным случаем. Однако надо помнить, что в нестационарном случаерассматриваются совсем другие задачи. В отсутствие зависящего от времени оператора V (t) уравнение Шредингерасводилось к стационарному, а временная зависимость вектора состояния определялась с помощью "простого"оператораэволюци趵i b(6.2)U0 (t) = exp − H0 t .~В случае, когда гамильтониан зависит от времени, теряет смысл говорить об уровнях энергии, поскольку энергия системы E не сохраняется.

Поэтому в нестационарномслучае и задача формулируется об изменении состояний.Пусть возмущение мало, тогда видно, что в каждый момент времени основное поведение системы определяетсяневозмущенным гамильтонианом H0 , а V (t) слегка "подправляет"изменение во времени Ψ(0) (t). Исходя из этих соображений будем искать точную волновую функцию Ψ(t)в видеΨ(t) = U0 (t)ΨI (t),(6.3)где ΨI (t) = ΨI (0), если V (t) = 0.Поскольку оператор эволюции подчиняется уравнениюi~∂b 0 U0 (t, t0 )U0 (t, t0 ) = H∂t(6.4)уравнение Шредингера принимает видi~∂U0∂ΨI (t)b 0 U0 ΨI (t)+V (t)U0 ΨI (t). (6.5)ΨI (t)+i~U0=H∂t∂tВ силу уравнения (6.4) остается только два слагаемых. Умножим получившееся уравнение слева на U0+ и получимi~∂ΨI (t) = U0+ Vb (t)U0 ΨI (t) ≡ VI (t)ΨI (t).∂t31(6.6)Это так называемое представление взаимодействия.

Как иследовало ожидать, ΨI (t) изменяется только за счет возмущения VI (t), но на "собственное"изменение оператора VI (t)"накладывается"эволюция невозмущенной системы:1.7−1 b−1 bVI (t) = U0+ (t)Vb (t)U0 (t) = ei~ H0 t Vb (t)e−i~ H0 t(6.7)Представления основных операторовРассмотрим теперь некоторые основные физические величины и соответствующие им операторы. Прежде всего заметим, что состояние частицы (квантовой системы) в точкеr по определению задается вектором состояния |ri, состояние частицы с импульсом p –вектором |pi.Поскольку координата – физическая величина, согласно введеным определениям, ей соответствует оператор r̂,для которого вектора |ri – собственные вектора с соответствующими собственными значениями:r̂|ri = r|ri.(7.1)Здесь r - собственное значение оператора координаты, ионо соответствует тому, что частица находится в точке cкоординатами r.Те же самые слова можно произнести и для импульсачастицы:p̂|pi = p|pi.(7.2)Здесь p - собственное значение оператора импульса, и оносоответствует тому, что частица обладает импульсом p.ОператорPbr = |rihr|(7.3)проектирует любой вектор на базисный вектор состоянияс координатой r:Pbr |ψi = |rihr|ψi = hr|ψi|ri32(7.4)Здесь проекция hr|ψi показывает, как выглядит состoяние|ψi в точке r.

Но это не что иное как по определению волновая функция. Таким образом(7.5)ψ(r) = hr|ψi.Соответственно мы рассматриваем состояние в координатном представлении. Полное разложение вектора |ψi представляется в виде интегралаZ|ψi = hr|ψi|ridr.(7.6)Пусть теперь |ψi ≡ |pi, тогдаPbr |pi = |rihr|pi = hr|pi|ri.(7.7)Но волновая функция hr|pi описывает состояние частицы сопределенным импульсом, т.е. свободную частицу, а потомуэто есть не что иное как волна де Бройля 3 :hr|pi = ψp (r) = Aei~−1 pr.(7.8)Теперь мы понимаем, что волновая функция непрерывногоспектра должна быть нормирована на δ-функцию:ZZ−10ψp∗ 0 (r)ψp (r)dr = |A|2 ei~ (p−p )r dr == |A|2 (2π~)3 δ(p − p0 ).(7.9)Таким образомψp (r) =1−1ei~ pr .(2π~)3/23(7.10)Это утверждение будет доказано строго ниже, исходя из коммутационных соотношений33Действие операторов на собственные вектора представляется тривиальным: получаются собственные значения.Вся проблема состоит в том, чтобы определить, как действуют операторы на произвольные вектора состояний.

Сперва определим, как действие операторов выглядит в собственном базисе (в "собственной системе отсчета"), а затем увидим, как они выглядят в "несобственной системеотсчета". Подействуем сперва на произвольный вектор состояния оператором координаты r̂:r̂|ψi = |ϕi,(7.11)где |ϕi неизвестный пока вектор. В базисе собственных состояний оператора координаты вид "неизвестного"состоянияполучается разложением его по базису соcтояний |ri.

Проекции этого разложения по определению дают значения (вид)состояния |ϕi в точке с координатой r, т.е. волновую функцию. Имеем:Zhr|ϕi = ϕ(r) = hr|r̂|ψi = hr|r̂1̂r |ψi = hr|r̂ dr0 |r0 ihr0 |ψi ==Z000dr hr|r̂|r ihr |ψi =Zdr0 rδ(r − r0 )ψ(r) = rψ(r). (7.12)Как видим, действие оператора координаты на произвольное состояние в собственном представлении сводится к умножению состояния на значение координаты. Причем мы видим, что при переходе от векторов состояний к волновымфункциям интегрирование по всем матричным элементами проекциям "уходит"и можно говорить о том, что оператор координаты есть простая операция умножения на самукоординату. Такое свойство связано с локальностью оператора.

Тем не менее, строго говоря, мы всегда должныпомнить, что оператор в каком-либо представлении естьвполне определенная матрица. Однако, как только что мы34видели, для волновых функций этот факт оказывается "спрятанным". Поэтому общепринято говорить, что действие оператора координаты ( а соответственно и любой функции отоператора координаты ) на волновую функцию сводится кпростому умножению.УпражнениеИспользуя свойство функции от оператора F (fˆ)ψn =F (fn )ψn , если fˆψn = fn ψn , показать, чтоhr|U (r̂)|r0 i = U (r)δ(r − r0 )(7.13)ПримерОпределим оператор трансляции Tba на расстояние a егодействием на вектора состояний с определенной координатой |ri следующим образом:Tba |ri = |r + ai.Посмотрим теперь, как действует этот оператор на произвольный вектор состояния |ψi.

По определениюTba |ψi = |φi.Теперь надо найти связь двух состояний |ψi и |φi в координатном представлении, т.е. волновых функций. Вновьбудем действовать по определению. Спроектируем полученные состoяния на состояние |ri:hr|Tba |ψi = hr|φi = φ(r).Выражение слева "расщепим"единичным оператором 1̂r :ZZhr|Tba 1̂r |ψi = dr0 hr|Tba |r0 ihr0 |ψi = dr0 hr|r0 + aiψ(r0 ) =Zdr0 δ(r − r0 − a)ψ(r0 ) = ψ(r − a).35Или окончательно в координатном представленииTba ψ(r) = ψ(r − a).Заметим, что полученный результат отличается от "привычного". Все дело в том, что привычное определение оператора трансляции его действием на волновую функциюобратно нашему определению. Как видно, мы здесь определили оператор трансляции его действием на базисные вектора, что в линейной алгебре означает преобразование системы координат.

Определяя же оператор трансляции егодействием на волновую функцию, мы не изменяем базисные вектора, но смещаем саму физическую систему, что влинейной алгебре означает преобразование пространства.Как хорошо известно, это обратные друг по отношению кдругу преобразования. Такая ситуация часто встречаетсяне только в квантовой механике, но и вообще в физике, поэтому следует быть очень внимательным при выполнениикаких-либо преобразований. Ясно, что окончательный (физический) результат не зависит от того, что преобразуется,но ни в коем случае нельзя смешивать различные преобразования в одной задаче! Поэтому лучше всего придерживаться всегда какого-либо одного типа преобразований:либо преобразовывать базисные вектора (систему координат, отсчета), либо преобразовывать физическую систему(пространство).Упражнения1. Найти эрмитовски сопряженный оператор трансляции Tba+ .2.

Найти вектор кет:3. Найти бра-векторы:Tba+ |ri.hr|Tba36hr|Tba+ .Подействуем теперь оператором импульса на произвольный вектор:p̂|ψi = |χi.(7.14)В базисе собственных состояний |pi вид "неизвестного"состоянияполучается разложением его по данному базису. Проекцииэтого разложения по определению дают значения (вид) состояния |χi в точке с импульсом p.

Имеем:Xhp|χi = χp = hp|p̂|ψi = hp|p̂1̂p |ψi = hp|p̂|p0 ihp0 |ψi =p0Xp0hp|p̂|p0 ihp0 |ψi =Xpδp,p0 ψp0 = pψp .(7.15)p0Таким образом, получаем, что, как и для оператора координаты в координатном представлении, действие оператора импульса в собственном представлении сводится к простому умножению функции в импульсном представлениина значение импульса.1.8Матрица перехода, волновая функция свободной частицы.Посмотрим теперь, какой вид имеет состояние |χi в координатном представлении. Для этого спроектируем его напроизвольный базисный вектор |ri:Zhr|χi = χ(r) = hr|p̂|ψi = hr|p̂1̂r |ψi = hr|p̂ dr0 |r0 ihr0 |ψi ==Zdr0 hr|p̂|r0 ihr0 |ψi =37Zdr0 hr|p̂|r0 iψ(r).(8.1)Как видим, для дальнейшего продвижения вперед следует понять, что представляет собой матрица оператора импульса в координатном представлении hr|p̂|r0 i.

Для ответа на этот вопрос нужно воспользоваться уже известными соотношениями, а именно: нам известен вид матрицыоператора импульса в собственном представлении и видсобственных состояний оператора импульса в координатном представлении. Поэтому "расщепим"матричный элемент оператора импульса в координатном представлениидвумя единичными операторами:ZZ00hr|p̂|r i = hr|1̂p p̂1̂p0 |r i = hr| dp|pihp|p̂ dp0 |p0 ihp0 |r0 i ==ZZdpdp0 hr|pihp|p̂|p0 ihp0 |r0 i.(8.2)В последней формуле осталось неизвестным только выражение hr|pi, которое с формальной стороны есть матрица перехода от координатного к импульсному представлению.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5140
Авторов
на СтудИзбе
441
Средний доход
с одного платного файла
Обучение Подробнее