85034 (Вопросы к гос. экзамену по дисциплине Математика – Алгебра), страница 5

2016-07-30СтудИзба

Описание файла

Документ из архива "Вопросы к гос. экзамену по дисциплине Математика – Алгебра", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. .

Онлайн просмотр документа "85034"

Текст 5 страницы из документа "85034"

1. f(x)+(g(x)+h(x))=(f(x)+g(x))+h(x)

f(x)+g(x)=g(x)+f(x)

f(x)(g(x)h(x))=(f(x)g(x))h(x)

f(x)(g(x)+h(x))=f(x)g(x)+f(x)h(x)

Ассоциативность сложения и умножения, коммутативность сложения и дистрибутивные законы непосредственно вытекают из введенных нами операций над многочленами.

2. - называют нулевым многочленом, легко проверить, что , т.е. - выполняет роль нулевого элемента в алгебре K[x].

  1. f(x)=(-an)xn+...+(-a1)x+(-a0)=-f(x) – называют противоположным многочленом для многочлена f(x), он выполняет роль противоположного элемента в алгебре. Так как все аксиомы кольца выполняются, то - кольцо, которое обозначают K[x] и называют кольцом многочленов над кольцом K.

Теорема 7. Если K область целостности, то K[x] тоже область целостности.

Для доказательства этой теоремы введем понятие степени многочлена.

Степенью многочлена f(x) называется максимальный показатель степени x с коэффициентом отличным от нуля. Обозначение: deg f(x)=n, где an0.

Степень многочлена обладает свойствами:

deg (f + g) max (deg f, deg g); deg (fg) = deg f + deg g, если K – область целостности. Доказательство свойств степени многочлена осуществляется на основе двух аргументов: во-первых, на основании выполнения операций; во-вторых, на основании целостности K.

Приступим к доказательству теоремы. Требуется проверить выполнимость: (1) коммутативности умножения и (2) отсутствие делителей нуля.

  1. коммутативность умножения следует из определения умножения многочленов над областью целостности, где умножение элементов коммутативно.

  2. f(x) , deg f(x)=n0, g(x) , deg g(x)=m0,

deg (f(x)g(x))=deg f(x)+deg g(x)= n+m 0 deg (fg) = n+m 0 cn+m 0 (fg) , это и доказывает отсутствие делителей нуля в K[x], где K – область целостности.

Пусть возникла ситуация, где требуется многочлен f(x) = anxn+...+a1x+a0 разделить на двучлен (x-a). Это можно сделать с помощью алгоритма, который принято в математике называть схемой Горнера. Построим этот алгоритм.

f(x) = (x-a)g(x)+r(x), где f(x) = anxn+...+a1x+a0, g(x)= bnxn+...+b1x+b0 .

Воспользуемся свойством степени, получим:

deg f(x) deg [(x-a)g(x)+r(x)] max[deg (x-a)g(x), deg r(x)]

deg (x-a)g(x)=deg (x-a)+deg g(x). Из этих равенств можно сделать вывод, что m=n-1, deg r(x)=0, т.е. r(x) – число, т.е. anxn+an-1xn-1+...+a1x+a0=(x- -a)bnxn+...+b1x+b0+r. Раскроем скобки справа и приравняем коэффициенты многочленов. Для удобства одновременно воспользуемся схемой.

an

an-1

...

A2

a1

a0

a

bn-1

bn-2=abn-1+an-1

...

b0=ab1+a1

b0=ab1+a1

r=ab0+a0

anxn=bn-1xn bn-1=an

an-1xn-1=bn-1xn(-a)+bn-2xn-1 an-1=bn-1(-a)+bn-2 bn-2=an-1+abn-1

b1=ab2+a2, b0=ab1+a, r=ab0+a0.

Введем понятие корня многочлена.

Определение 8. Число x=a называется корнем многочлена f(x), если значение многочлена f(a) равно нулю.

Рассмотрим теорему Безу о делении многочлена на двучлен (x-a).

Теорема 9. (Безу) Остаток от деления многочлена f(x) на двучлен (x-a) равен f(a).

f(x), (x-a). Поделим, f(x)=(x-a)g(x)+r, мы установили, что r – число. Подставим x=a в равенство, получим f(a)=0g(a)+r, откуда вытекает утверждение теоремы f(a) = r.

Из теоремы вытекает следствие: f(x)(x-a) x=a корень уравнения.

f(x) (x-a) f(x)=(x-a)g(x)+f(a) (по теореме Безу), f(a)=0 x=a корень f(x)

Пусть x=a корень многочлена, т.е. f(a)=0 f(x)=(x-a)g(x) (по теореме Безу), т.е. f(x) (x-a).

Вопрос 11. Кольцо многочленов над полем комплексных чисел.

В алгебре многочленов имеют место две взаимно пересекающиеся, взаимно дополняющие линии. Это вопросы существования и количества корней многочлена и разложение многочлена на неприводимые множители.

В вопросе представлено решение этих аспектов для кольца многочленов над полем комплексных чисел, т.е. для кольца C[x], где C – поле комплексных чисел.

Итак, пусть P – поле.

Определение 1. Поле P называется алгебраически замкнутым, если любой многочлен положительной степени имеет в этом поле корень. Алгебраической замкнутостью обладает поле C, это решается основной теоремой алгебры.

Теорема 2. Любой многочлен положительной степени из кольца C[x] обладает по крайней мере одним корнем. Примем эту теорему без доказательства в силу того, что она требует предварительного доказательства ряда теорем из математического анализа.

Из основной теоремы алгебры вытекает ряд следствий, их и рассмотрим.

Следствие 3. Неприводимым над полем C многочленом является многочлен только первой степени.

Для доказательства этого утверждения введем определения приводимого и неприводимого многочлена. Многочлен f(x)P[x] называется приводимым, если его можно представить в виде произведения двух многочленов меньшей положительной степени. В противном случае многочлен называется неприводимым.

Приступим к доказательству следствия 3.

Пусть дан f(x)C[x]. Пусть он приводим. Покажем, что

  1. рассмотрим f(x)=a1x+a0, degf(x)=1. Предположим, что f(x) – приводим. Тогда по определению приводимого многочлена f(x)=f1(x)f2(x), где degf1(x)>0, degf2(x)>0. Однако по условию degf(x)=1=1+0=0+1, то есть degf1(x)=0degf2(x)=0, что противоречит свойству степеней. Полученное противоречие и доказывает неприводимость многочлена (а1х+а0).

Пусть deg f(x)>1, тогда по основной теореме алгебры он обладает корнем. Пусть таким корнем будет х=а. По следствию из теоремы Безу: f(x)=(x-a)f1(x). Так как deg(x-a)=1, degf(x)>1, deg(x-a)f1(x)=deg(x-a)+degf1(x), то degf(x)>0; то есть f(x) – приводим, что противоречит условию. Таким образом, неприводимым над полем С является только многочлен первой степени.

Следствие 4. Если f(x)C[x], degf(x)=n1, то его можно представить в виде:

с(x-a1)(x-a2)...(x-an), (*)

где ai – корни его, а сС.

Пусть f(x)=c1x+c0=c1 =c1(x-a1), где ,то есть для многочлена f(x) утверждение верно: он представляется в виде (*) и а1– корень его, а с1– старший коэффициент.

Далее, проведем доказательство методом математической индукции. Пусть теорема верна для многочлена степени меньшей или равной (n-1), то есть

f(x)=c(x-a1)...(x-an-1), где a1, a2, ..., an-1– его корни, а с – старший коэффициент.

Пусть f(x) – неприводим, а это возможно только для n=1, для этого случая теорема верна. Либо f(x) – приводим, тогда f(x)=g(x)h(x), где степени g(x) и h(x) меньше n, для них теорема верна. В силу свойства степени f(x)=c(x-a1)...(x-an), то есть множителей будет ровно n. По следствию из теоремы Безу аi – корни f(x), если расткрыть скобки в правой части и воспользоваться равенством многочленов, то с – старший коэффициент f(x). Теорема доказана.

Из этого в следствии с необходимостью вытекает еще два.

Следствие 5. Количество комплексных коней многочлена f(x)C[x] совпадает с его степенью.

Следствие 6. Любой многочлен f(x)C[x] положительной степени n можно представить в виде:

f(x)=c(x-a1)1(x-a2)2...(x-ak)k, где 1+...+k=n, ai – его корни. Такое представление носит название канонического. Возможность такого представления вытекает из следствия (4) и допустимости повторяющихся корней, то есть кратных корней многочлена.

В теории многочленов над С имеет место теорема, устанавливающая связь между корнями многочлена и его коэффициентами.

Теорема 7. Пусть f(x)C[x], degf(x)=n, an=1 (то есть f(x) – нормирован), тогда как известно, f(x)=(x-a1)(x-a2)...(x-an), где имеет место соотношение:

а0 = (-1)n a1 a2 ... an;

a1= (-1)n-1 (a1a2 ... an-1+ ... + a2a3 ... an);

. . . . . . . . .

an-2= a1a2+ a1a3+ ... + an-1an ;

an-1= -(a1+ a2+ ... +an);

эти соотношения называются формулами Виета. Однако, справедливости ради, надо отметить, что Виет нашел эту зависимость только для случая положительных корней, в общем виде эта теорема установлена А. Жирарое.

Вопрос 12 Кольцо многочленов над полем действительных чисел (R).

В алгебре имеет место теория многочленов. Многочлен введен по определению как выражение f(x)=anxn+an-1xn-1+...+a1x+a0, где aiK – кольцо, x0=1, 1·x= x. Введение операций “+” и “” многочленов позволило построить алгебру многочленов, которой является кольцо многочленов над кольцом К и обозначается К[x]. Особый интерес представляет теория многочленов, когда вместо кольца К взято поле. Такими числовыми полями являются C, R, Q.

В силу существования операции деления в поле, стало возможным рассматривать два взаимосвязанных вопроса в теории многочленов: корни многочлена и разложение многочлена на неприводимые многочлены.

Рассмотрим решение этой проблемы для кольца многочленов над R.

Теорема 1. Комплексные корни f(x)К[x], то есть с действительными коэффициентами попарно сопряженными.

Пусть f(x)К[x], и пусть z=a+bi; a,bR комплексное число, являющееся корнем f(x), причем degf(x)2 в противном случае f(x) комплексных корней иметь не может. Покажем, что =a–bi, b0 тоже является корнем f(x).

f( )=an n+an-1 n-1+...+a1 +a0= (воспользуемся свойством сопряжения) = = , то есть является корнем f(x), что и требовалось доказать.

Рассмотренная выше теорема позволяет доказать теорему о неприводимом многочлене из R[x]. Напомним определение приводимого и неприводимого многочленов.

f(x) называется неприводимым, если его можно представить в виде произведения двух многочленов меньшей положительной степени и неприводимым, если этого сделать нельзя.

Рассмотрим f(x)= a1x+a0, aiR. его нельзя представить в виде произведения двух многочленов меньшей положительной степени в силу того, что 1=1+0=0+1.

Решать будем вопрос о приводимости и неприводимости многочлена f(x)R[x] степени большей или равной 2.

Теорема 2. Неприводимый многочлен f(x)R[x], degf(x)=n2 ассоциирован с многочленами (x-a)2+b2,где x=a+bi комплексный его корень.

Пусть f(x)R[x], degf(x)=n2, пусть x=a+bi, b0 – корень f(x), он неприводим.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5302
Авторов
на СтудИзбе
416
Средний доход
с одного платного файла
Обучение Подробнее