85034 (Вопросы к гос. экзамену по дисциплине Математика – Алгебра)

2016-07-30СтудИзба

Описание файла

Документ из архива "Вопросы к гос. экзамену по дисциплине Математика – Алгебра", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "к экзамену/зачёту", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85034"

Текст из документа "85034"

Вопросы к Гос.Экзамену по дисциплине Математика – Алгебра

Вопрос 3. Определитель квадратной матрицы.

В вопросе рассматривается одна из характеристик матрицы - числовая. Все свойства определителя (числовые характеристики) матрицы рассматриваются для того, чтобы это число стало возможным находить. Введение понятия определителя матрицы позволяет расширить возможности теории решения систем линейных уравнении и другие приложения теории матриц.

Итак, введем определение определителя матрицы и рассмотрим его свойства.

Пусть дана квадратная матрица А=(aij)n n, где аij R

Для введения определения матрицы обратимся к некоторым вопросам теории подстановок.

П одстановка = 1 2 … n называется взаимно-однозначное

(1) (2) …(n)

отображение множества М={1,2,...,n} на себя. Множество всех подстановок обозначается Sn, |Sn|=n!

Подстановки характеризуются своей четностью и нечетностью, которые вводятся через инверсию:

-если у подстановки четное число инверсии, то она четная;

-если-нечетное число инверсий, то она нечетная.

Для обозначения четности подстановки используется символ sgn( ) -знак подстановки. Зафиксируем ряд необходимых утверждений:1) = (единичная)-четная; 2) sgn (--1 ) = sgn ;

3) одна транспозиция меняет четность подстановки.

Опр.1.Определителем квадратной матрицы называется число, равное сумме n! слагаемых, каждое из которых есть произведение n элементов матрицы, взятых ровно по одному из каждой строки и каждого столбца матрицы со знаком sgn ( )

где -подстановка из индексов элементов произведения ,т.е.

|A|=sgn()a1 (1) a2 (2) …an (n) , A=(aij)n*n

приняты также обозначения для определителя: def A, Δ.

Теорема 2. Определитель матрицы обладает рядом свойств, среди которых следующие:

1. |A|=|At|,где Аt -трансионированная;

2. Определитель матрицы с нулевой строкой равен нулю;

3. Определитель матрицы с двумя пропорциональными строками равен нулю.

4. Определитель матрицы с двумя равными строками равен нулю.

5. Перестановка двух строк(столбцов) матрицы изменяет знак определителя.

6. Если к одной строке матрицы прибавить другую,уменьшенную на число, не изменяет ее

определитель.

7. Если i-строка (столбец) матрицы имеет вид i(a1+...ak b1+...bk c1+....ck),то определитель такой матрицы равен сумме K-определителей,каждый из которых в i-строке имеет соответственно ее слагаемые, а остальные элементы совпадают с элементами матрицы.

8. Если строку (столбец) матрицы умножить на число x, то определитель матрицы умножится на это число.

и другие.

Для решения проблемы вычисления определителя матрицы вводятся понятия минора элемента aij (Mij) и его алгебраического дополнения (Aij) .

Минором Mij элемента aij матрицы называется определитель матрицы,

полученный вычеркиванием i-строки и j-столбца.

Алгебраическим дополнением Aij элемента aij называется число (-1)i+j Мij

Имеет место теорема о разложении по элементам строки (столбца).

Теорема 3 . |A|= a1jA1j +a2jA2j +....+anjAnj или

|A|=ai1Ai1 +ai2Ai2 +...+ain Ain .

Доказательство разобьем на три случая:

Cлучай 1. a11…a1n

|A|= a21…a2n = ann Mnn

………

0……ann

Воспользуемся для доказательства определением определителя

|A|=sgn()a1 (1) a2 (2)…a n-1, (n-1) a n (n)

Так как в n-ой строке все элементы кроме ann нули, то все слагаемые в определителе кроме ann равны нулю. Тогда определитель такой матрицы равен:

sgn() a1 (1) a 2 (2)....a n-1, (n-1) a n n =a n n ( sgn(’) a 1(1) a 2 (2) ...a n-1,(n-1)),где

= 1 2 ... n-1 n ’ = 1 2 ... n-1

(1) (2) ... (n-1) (n) , (1) (2) ... (n) , т.к

= 1 2 ... n-1 n = 1 2 .... n

(1) (2) ... (n-1) (n ) (1) (2) ... (n) ,то sgn () =sgn(’).

Мы видим, что в скобках определитель порядка (n-1),полученного вычеркиванием n-ой строки и n-ого столбца. Поэтому

|A|=annMnn, что и требовалось доказать.

Случай 2.

a 11 ... a 1j .. a 1n

|A|= ................................. = a ij A ij

0 ... a ij ... 0

..................................

a n1 ... a nj ... a nn

Для доказательства воспользуемся свойством перестановки строк и столбцов матрицы, получим:

A11 ... a1j ... a1n a11 .. a1j ..a1n a11 .. a1n .. a1j

A = ....................... = n-i .................... = n-i n-j .................... =

0 .. aij ... 0 an1 .. anj ..ann an1 .. ann ..anj

an1 .. anj ... ann 0 .. aij .. 0 0 .. 0 .. aij

= 2n- Mij*aij= i+jaijMij=aijAij

Случай 3. |A|=a1iA1i +a2iA2i +....+aniAni.

A11 .. a1j .. ann ... a1j+0+..+0 ... .. a1j .. .. 0 .. ... 0

A21 .. a2j .. a2n ... 0 +a2j+..+0 .. .. 0 .. .. a2j .. ... 0

A = ..................... = ......................... = ......... + .......... +..+ ....... =

an1 .. anj .. ann ... 0+0+..+anj ... .. 0 .. .. 0 .. ...anj

= a1jA1j+a2jA2j+..+anjAnj

Рассмотренная теорема позволяет вычислить определитель матрицы любого порядка .Теория определителей имеет приложительное значение, то есть используется в качестве средства для решения вопрос в математике. В частности, она лежит в основе решения систем линейных уравнений как одного из способов. Возможность использования теории определителей для решения систем зафиксированы теоремой Крамера.

Теорема 4. (Крамера). Если |A| не равен нулю, то система aijxj=bi, где i=1,n; j=1,n имеет единственное решение, которое находится по формуле:

xi= , где = A ,

xi-определитель матриц, полученных из А заменой i-столбца столбцом свободных членов.

Пусть (1) aijxj=bj, i=j=1,n, |A| 0. Запишем систему (1) в виде матричного уравнения (2): AX=b, где А-основная матрица системы, .

X1 b1

X= X2 , b = b2

.. ..

xn bn


Е сли |A| 0 А-1 А-1АХ=А-1b X=A-1 b. Известна теорема утверждающая, что A-1 = A* , где A* -присоединенная матрица к матрице A, она состоит из алгебраических дополнений элементов, расположенных в столбцах. Тогда:

A11 A21 .. An1 b1 b1A11+b2A22+..+bnAn1

X= A* b = A12 A22 .. An2 b2 = b1A12+b2A22+..+bnAn2 =

........................ ... ...................................

A1n A2n .. Ann bn b1A1n+b2A2n+..+bnAnn

x1

= x2 ,

......

xn

ч то и позволит получить формулу: Xi= , где = A , i=1,n

Вопрос 4. Бинарные отношения.

Математика как наука отражает мир взаимодействующих простых и сложных объектов (вещей, явлений, процессов). Абстрагируясь от реальности, математика рассматривает унарные, бинарные и другие отношения.

В вопросе требуется рассмотреть бинарные отношения, их свойства и особо обратить внимание на отношение эквивалентности, заданного на одном множестве. Рассмотрим прямое произведение двух множеств. A*B={a,b}, aA, bB}. Мы имеем множество упорядоченных пар. Есть смысл рассматривать его подмножество, которое и носит название “бинарное отношение”.

Опр.1 Бинарным отношением, заданным на множестве А, называется подмножество прямого произведения А*А. В силу своей природы, бинарные отношения являются множеством упорядоченных пар элементов из А.

Обозначения: W=a,b /,a,bA; aWb, a,bA; a,bW,где a,bA

Например, бинарные отношения являются:

1. ""на множестве прямых.

2. "=" на множестве чисел.

3. " " изоморфизм на множестве алгебр.

4. " ~ " эквивалентность систем и др.

Бинарные отношения могут обладать свойствами:

1) рефлексивность: aA, aWa;

2) симметричность: a,bA, aWbbWa;

3) транзитивность: a,b,c A,aWb и bWcaWc

4) связность: a,bA,aWbbWa;

5) антирефлексивность: aA,a,aW;

6) антисимметричность: a,bA,aWb,bWaa=b

В зависимости от того, каким набором свойств обладают отношения, они допускают

к лассификацию, которую представим схемой:

Бинарное

отношение

ф ункциональность эквивалентность: порядок:

xA, ! yA: рефлексивность, антисимметричность,

f:xy cимметричность, транзитивность

транзитивность

строгий порядок: нестрогий порядок:

антирефлексивность рефлексивность

частичный порядок: полный порядок:

не обладает свойством обладает связностью

связности

Остановимся на отношении эквивалентости, то есть на отношении WA*A, обладающее свойствами рефлексивности, симметричности, транзитивности. Легко проверить, что примерами таких отношений являются "=", "~", "сравнение по модулю", изоморфизм алгебр и другие.

Отношение эквивалентности играет большую роль в математике, значимость его определяется тем, что оно задает разбиение, а потому позволяет получать новые множества. Рассмотрим это подробнее.

Разбиением множества называется совокупность непустых подмножеств, непересекающихся, объединение которых совпадает с данным множеством.

Имеет место теорема, которая позволяет рассматривать отношение эквивалентности как разбиение.

Теорема 2. Бинарное отношение задает на A0 разбиение.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
426
Средний доход
с одного платного файла
Обучение Подробнее