85034 (Вопросы к гос. экзамену по дисциплине Математика – Алгебра), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Вопросы к гос. экзамену по дисциплине Математика – Алгебра", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. .

Онлайн просмотр документа "85034"

Текст 2 страницы из документа "85034"

Для доказательства теоремы введем такое понятие как класс эквивалентности:

Ka=x/xWa /x,aA a-образующий элемент класса.

свойствами рефлексивности, симметричности, транзитивности. Легко проверить, что примерами таких отношений являются "=", "~", "сравнение по модулю", изоморфизм алгебр и другие.

Отношение эквивалентности играет большую роль в математике, значимость его определяется тем, что оно задает разбиение, а потому позволяет получать новые множества. Рассмотрим это подробнее.

Разбиением множества называется совокупность непустых подмножеств, непересекающихся, объединение которых совпадает с данным множеством.

Имеет место теорема, которая позволяет рассматривать отношение эквивалентности как разбиение.

Теорема 2. Бинарное отношение задает на A0 разбиение.

Для доказательства теоремы введем такое понятие как класс эквивалентности:

a-образующий элемент класса.

Классы эквивалентности обладают свойствами:

1. aA попадает в какой-либо класс, что означает, что Ka . Это утверждение следует из введенного определения класса.

  1. Любые два элемента из класса находятся в отношении, т.е. если b,ca , b c.

c,bKa a c, c a , c b

a b a b

Это свойство позволяет утверждать, что любой представитель класса может являться его образующим.

3. Классы не пересекаются, т.е. КаКb=

Пусть КаКbсКаКbсКа,сКbсWа,cWbаWс,сWbаWbКа=Кb.

Свойства классов и позволяют утверждать истинность теоремы: A,W-эквивалентности Ka ,Kb ,...

a) классы-подмножества A;

b) классы-неизвестного подмножества;

c) классы-не пересекающиеся;

d) Ka =A , аА

Имеет место и обратное утверждение.

Теорема 3.Если на А задано отношение Rs, соответствующее разбиению S, то Rs-отношение эквивалентности .

Пусть A, Rs, S-разбиения, следовательно, A разбивается на подмножества, объединение которых составляет A.

Если подмножества рассматривать как классы, полученные в результате отношения Rs: "принадлежность одному подмножеству", то легко доказать, что все свойства классов имеют место, поэтому Rs-эквивалентность.

Обозначим множество классов эквивалентности через A/w. Это новое множество называют фактор-множеством. Итак, A/w= { Ka /a A } .

Рассмотрим некоторые примеры применения теории отношении эквивалентности:

  1. Hа множестве дробей {a/b, аZ, bN} зададим отношение "=": а/b=с/dad=bс.

Тогда класс эквивалентности Ка/b={x/y| x/y=a/b}-рациональное число, а {Ka/b}=A/W-множество рациональных чисел.

2. Z, “”: ab(mod m)(a-b)m, {Ka}=Z/(m)=Zm-основное множество кольца классов вычетов.

3. Ф-множество фигур, " ~ "-подобие. Это отношение рождает понятие "форма фигуры" как класса подобных фигур.

Вопрос 5 . Элементы теории групп.

Алгебра как наука изучает различные алгебры: векторные пространства, группы, кольца. В вопросе требуется рассмотреть одну из них – группу. Определение группы задается аксиометрически и рассматривается одно из наиболее важных отношений, которое изучает эта наука, отношение эквивалентности, которое позволяет получать новые группы. Введем понятие алгебры.

Опр. 1. Алгеброй называется упорядоченная пара множеств ,где A-множество элементов любой природы, а V-множество алгебраических операций.

Опр. 2. Пусть дано множество A . Алгебраическая операция “ ” на множестве А называется отображение f: АА, т.е. для a,bA, () cA:ab=c

Опр. 3. Группой называется алгебра с одной алгебраической операцией “ ”,

удовлетворяющей свойствам (аксиомам):

1.a,b,cG, a(bc)=(ab)c,

2.eG,aG: ea=ae=a.

3.aG, aG:aa=aa=e.

e-нейтральный элемент относительно операции;

а-симметричный относительно операции для а.

Группа, как алгебра, обладающая рядом свойств допускает классификацию. Представим ее схемой:

группа



e – нулевой,

а = (-а) противоположный

аддитивный,

операции “+”.

мультипликатив-ый, операции “*”.

e – единичный,

а=а-1 обратный.



коммутативный

некоммутативный


Будем рассматривать дальнейшие теоретические вопросы в терминах мультипликативной группы.

Теорема 4 (свойства группы). В группе нейтральный элемент единственный, для каждого элемента обращение единственно, уравнения ax=b, xa=b разрешимы и имеют единственное решение.

1. Пусть для еG, e1,e2-нейтральный (единственный), рассмотрим

(1):e1e=ee1=e.

(2): e2e=ee2, откуда получим:

e1=e1e=e1ee2=ee2=e2, т.е. e1=e2.

2. Пусть для aG, a1-1, a2-1-обратный для а.

Рассмотрим (1): a1-1a=aa1-1=e

(2): a2-1a=aa2-1=e , откуда получим:

a1-1aa2-1=ea2-1=a2-1,

a1-1aa2-1=a1-1e=a1-1 a2-1=a1-1.

3 . ax=b; aGa-1: aa-1=a-1a=e. Домножим уравнение на a-1:

a-1ax=a-1bex=a-1bx=a-1b.

Пусть уравнение имеет два решения x1, x2:

ax1=b, ax2=b-равенства, домножим на а-1:

x1=a-1b, x2=a-1b.

В силу алгебраичности операции x1=x2, что и требовалось доказать.

Из определения группы видно, что G это множество, поэтому есть смысл рассматривать его подмножества. Среди подмножеств особый интерес представляют те, которые являются группами, т. е. замкнуты относительно той же групповой операции.

Опр. 5. Подмножество К группы называется подгруппой, если оно само является группой .

Теорема 6. (критерий подгруппы). Подмножество К группы G является подгруппой тогда и только тогда, когда выполнены два условия:

1.a,bK, ab,baK.

2.aK, a-1K.

G-группа, K G. Пусть K G (подруппы), тогда по определению К-группа. Следовательно, 1,2 выполнены.

G-группа, K G, 1, 2. Покажем, что K G, т. е. К-группа.

Для доказательства необходимо проверить четыре условия:

  1. Замкнутость К относительно групповой операции.

  2. Ассоциативность этой операции.

  3. Существование нейтрального элемента.

  4. Существование для каждого элемента обратного.

Из условия видно, что 1 и 4 выполнены. Второе имеет место в силу того, что КG. Проверим 3:

Т. к. aK, a-1K ,условие 1, то аa-1 К. Но аa-1= е, следовательно, еК, что и требовалось доказать. Критерий важен в теории групп тем, что сокращает процедуру проверки, является ли подмножество группой (подгруппой).

Особую роль в теории групп имеют подгруппы, называемые нормальными, или нормальными делителями. Выведем это понятие.

Пусть G-группа, K G-подгруппа. Зададим отношение “сравнения по подгруппе К”:

ab(mod K) ab-1 K. Проверим, что отношение “”-является эквивалентностью.

1).]aG a-1G, aa-1=e, eK aa-1K aa(mod K) ””-рефлексивно.

2).]ab(mod K)ab-1K, (a-b-1)-1Kba-1Kba(mod K)””-симметрично.

3).]ab(mod K), bc(mod K)ab-1K, bc-1K (ab-1)(bc-1)K ac-1K

ac(mod K) ””-транзитивно.

Таким образом, отношение сравнение по модулю в G является отношением эквивалентности, а эквивалентность, как известно, задает разбиение на G.

Обозначим класс эквивалентности, образованный элементами g G, g¯ и покажем, что g¯=Kg={hg| hK, gG}

Тогда множество классов эквивалентности, которые называются смежными классами группы G по подгруппе К, образуют фактор-множество.

{Kg| gG}=G/””-фактор-множество.

Аналогично можно вывести отношение сравнения по подгруппе иначе:

“ab(mod K)b-1aK”.

Для различения классы Кg и gК называют правым и левым, причем Кg=G и gK=G, a {Kg/gG} и {gK/gG}-образуют фактор-множества.

Возможен случай, когда для gG, Kg=gK. В этом случае К обозначают буквой Н и называют нормальным делителем группы G по Н. Чем интересен этот случай? Оказывается, над смежным классом группы G по Н можно производить операции, а это позволяет рассматривать новую алгебру.

Зададим операцию “ * ” на множестве смежных классов {Hg/g}, где нормальная подгруппа группы G так: Hg1Hg2=Hg1g2 . Покажем, что выведенная таким образом операция является алгебраической, т. е. покажем, что умножение не зависит от представителей классов, т. е., если

a, a'Hg1, b,b'Hg2, то aba'b'(mod H), т.е. ab, a'b'Hg1g2.

ab=(h1g1)(h2g2)=h1h2g1g2=hg1g2abHg1g2;

a'b'=(h1'g1)(h2'g2)=h1'h2'g1g2=h'g1g2a'b'Hg1g2, следовательно

ab, a'b' принадлежит одному классу, т. е. Операция “ * ” на множестве классов является алгебраической, что и дает возможность рассматривать новую группу.

Теорема 7. Множество смежных классов группы G по нормальной подгруппе Н образуют группу.

Т. к. G, H G-нормальная, {Hg/g G}=G/”” . Зададим операцию: Hg1Hg2=Hg1g2. Покажем, что фактор-множество по введенной операции является группой.

1.Hg1(Hg2Hg3)=Hg1(Hg2g3)=Hg1(g2g3)=H(g1g2)g3=Hg1g2Hg3=(Hg1Hg2)Hg3операция ассоциативная.

2. Hg=He=H Hg, H: HgH=HgHe=Hge=Hg, т. е. Н-выполняет роль нейтрального элемента на фактор-множестве.

3.Hg, Hg-1: HgHg-1=Hgg-1=He=H;

Hg-1Hg=Hg-1g=He=H, семейство класса Hg-1 выполняет роль обратного для Hg,

т.е. (Hg)-1=Hg-1.

так как все аксиомы имеют место, то мы имеем дело с группой. Ее обозначают G/H и называют фактор-группой.


Вопрос 6 Элементы теории колец.

В вопросе требуется ввести понятие кольца, рассмотреть классификацию колец и построить фактор-кольцо.

Так как кольцо это пример одной из алгебр, то следует напомнить определение алгебры.

Опр.1

Алгеброй называется упорядоченное множество двух множеств , где А 0

множество элементов любой природы, а U-множество операций.

Для введения определения кольца необходимо рассмотреть непустое множество и задание операций.

Опр.2

Кольцом называется алгебра < K,+, > с двумя бинарными операциями, которые

удовлетворяют следующим свойствам:

1. - аддитивная абелева группа,

2. “ ,, - ассоциативно,

  1. Имеет место два дистрибутивных закона, то есть а,в,с К , а(в+с)=ва+са.

Кольцо как алгебра допускает классификацию, представим её схемой:

Кольцо



С единицей,

т.е.

Без единицы

Коммутативны

т.е.

Не коммутативны


С делителями нуля, т.е.

Без делителей

нуля.

Замечание: Определение всех классов колец предоставляется сформулировать читателю.

Опр.3

Коммутативное кольцо с единицей без делителей нуля называеться областью

целостности.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5302
Авторов
на СтудИзбе
416
Средний доход
с одного платного файла
Обучение Подробнее