86407 (Нильпотентная длина конечных групп с известными добавлениями к максимальным подгруппам), страница 4

2016-07-29СтудИзба

Описание файла

Документ из архива "Нильпотентная длина конечных групп с известными добавлениями к максимальным подгруппам", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "86407"

Текст 4 страницы из документа "86407"

Теорема 2.3. Пусть - некоторая -группа, на которую действует -группа , причем некоторый элемент группы действует нетривиально на , но тривиально на каждую истинную -инвариантную подгруппу группы . Тогда существует такое простое число , что является либо элементарной абелевой -группой, либо -группой класса нильпотентности 2, у которой центр и коммутант совпадают, факторгруппа по коммутанту - элементарная абелева группа и представление на неприводимо.

Следует отметить, что если - разрешимая группа, то ограничитель влечет ограниченность длины ряда коммутантов группы .

Пусть означает следующее утверждение:

: для каждого положительного целого числа существует такое целое число , что всякая разрешимая группа экспоненты , порождаемая элементами, имеет порядок не больше .

Теорема 2.4. истинно, если истинно для всех степеней простых чисел , делящих .

В частности, так как известно, что , и истинны, то истинны и . В этих случаях, как и всегда, когда делится только на два простых числа, мы можем слово "разрешимая" заменить в формулировке словом "конечная". Если - число, свободное от квадратов, мы даже можем вычислить , когда извесны для всех простых , делящих , и всех . Так, порядок наибольшей конечной -порожденной группы экспоненты 6 дается формулой

где и

Пусть требуется доказать индукцией по порядку группы неравенство

Здесь и - числовые инварианты, определеннные для некоторого класса конечных групп, который мы предпологаем замкнутым. Мы предпологаем, что (2.3) выполняется для достаточно малых , следовательно и для , и, кроме того, что:

(I) если - подгруппа , то ;

(II) ;

(III) если - факторгруппа , то .

Тогда справедлива

Лемма 2.5. В доказательстве неравенства (2.3) индукцией по порядку группы можно предположить, что обладает только одной минимальной нормальной подгруппой.

В самом деле, если обладает двумя минимальными нормальными подгруппами и , мы получим, что , так что изоморфна подгруппе прямого произведения . Т.к. - инвариант, имеющий одинаковые значения для изоморфных групп, последние (I) и (II) дают

В силу предположения индукции и в силу условия (III) . Таким образом, , и точно также , так что , что и требовалось.

Заметим, что все силовские -инварианты, упомянутые раньше, кроме , заведамо удовлетворяют условиям (I), (II) и (III). То же верно и для инварианта разрешимой группы и инварианта -разрешимой группы; удовлетворяет условию (III). Таким образом, если удовлетворяет условиям (I) и (II), то этим же условиям удовлетворяет любая неубывающая функция , а если удовлетворяют условию (III), то этому же условию удовлетворяет любая функция , не убывающая по любому из аргументов. Так как все наши неравенства тривиальны для достаточно малых групп , то легко видеть, что утверждение последней леммы можно применять каждый раз, когда это необходимо.

Теорема 2.6. Если - разрешимая группа, то .

Доказывая теорему индукцией по порядку , можно предположить, что обладает только одной минимальной нормальной подгруппой. Так как разрешима, эта подгруппа будет -группой для некоторого простого числа . Тогда в верхнем -ряде (2.2) группы подгруппа . Отсюда

Но и -1, в то время как при инварианты и имеют одинаковые значения для и .

Пусть предложение индукции, применённое к группе , даёт

Отсюда следует теорема.

Нам понадобиться далее важное свойство верхнего -ряда -разрешимой группы, которое удобно вывести в немного более общем контексте. Пусть - некоторое множество простых чисел, а - дополнительное к множество. -группа - это конечная группа, порядок которой делится только на простые числа, входящие в . Конечная группа -разрешима, если каждый её композиционный фактор является либо -группой, либо -группой. Такая группа обладает верхним -рядом, для которого мы используем те же обозначения, что и в случае, когда содержит одно простое число . Таким образом, мы пишем

для ряда нормальных подгрупп, требуя, чтобы факторгруппа была наибольшей нормальной -подгруппой в , а факторгруппа - наибольшей нормальной -подгруппой в .

Лемма 2.7. Если -разрешимая группа не содержит неединичную -подгруппу, так что , то группа содержит свой централизатор в группе .

Пусть - централизатор группы . Если лемма не верна и , то мы можем выбрать нормальную подгруппу группы , такую, что и минимальную при этом условии. Так как группа -разрешима, факторгруппа оказывается или -группой, или -группой, а по определению группы она не может быть -группой. Следовательно, факторгруппа есть -группа и порядки групп и взаимно просты. По теореме Шура, группа обладает дополнением в группе . Так как , трансформирование группы элементом из индуцирует ее внутренний автоморфизм, а т.к. порядки и взаимно просты, этот автоморфизм может быть только тождественным. Тогда - прямое произведение и . Поэтому является характеристической подгруппой в , а следовательно, нормальной подгруппой в , в потиворечие с предположением, что . Это противоречие доказывает лемму. Заметим, что предположение на самом деле излишне, так как в общем случае мы можем применить лемму к факторгруппе .

Следствие 2.8. Пусть - некоторая подгруппа , индекс которой не делится ни на какое простое число из , тогда центр группы содержится в центре группы .

Действительно, подгруппа должна содержать нормальную -подгруппу группы .

Следствие 2.9. Пусть - некоторая подгруппа группы , содержащая , тогда не обладает неединичной нормальной -подгруппой.

Действительно, нормальная -подгруппа группы должна содержаться в центролизаторе группы .

Под -подгруппой конечной группы мы подразумеваем такую подгруппу, порядок и индекс которой взаимно просты. Если группа разрешима и ее порядок равен , где , то группа обладает -подгруппами порядка и любые две из них сопряжены, а поэтому изоморфны.

Теорема 2.10. Если - разрешимая группа порядка , где при , и если подгруппа группы порядка имеет класс нильпотентности то

В частности, для любой конечной разрешимой группы . -подгруппа некоторой факторгруппы , порядок которой делит , имеет класс нильпотентности, не превышающий , так что мы можем применить утверждение леммы 2.5 и получить результат индукцией по порядку группы , допустив что обладает только одной минимальной нормальной подгруппой. Это будет -группа для некоторого простого числа , и мы можем поэтому предполодить, что ее порядок делит . Тогда, если мы возьмем в качестве множество простых долителей числа , окажется выполненной предпосылка леммы 2.5. Если - наибольшая нормальная -подгруппа группы и - ее центр, то по следствию леммы 2.5 содержит центр -подгруппы группы , имеющей порядок . Порядок -подгруппы группы делит , поэтому класс нильпотентности ее не более . Для -подгруппы групп и порядка изоморфны, так что в силу предположения индукции, примененной к , получим

Так как , то доказательство по индукции проведено.

Прежде чем применять лемму 2.5 к доказательству неравенства для , удобно уточнить её для случая, при котором состоит из одного простого числа . Пусть есть -разрешимая группа с верхним -рядом (2.2) . Тогда лемма 2.5, применённая к группе , показывает, что если - элемент группы , не входящий в , то трансформирование элементом индуцирует в нетождественный автоморфизм. Необходимое уточнение состоит в замене группы группой , где - подгруппа Фраттини группы . Теперь - -группа, и таким образом - элементарная абелева -группа. Ясно поэтому, что автоморфизм группы , индуцированный группы , тождественный. Таким образом, множество элементов группы , которое тождественно трансформирует , является нормальной подгруппой группы , такой, что . По определению фактор группа не может быть -группой, отличной от 1, так что если , то группа должна содержать элемент , не входящий в и порядка, взаимно простого . Тогда индуцирует автоморфизм группы порядка, взаимно простого с . Но автоморфизм -группы, тождественоой по модулю подгруппе Фраттини, имеет порядок, равный степени числа . Таким образом, индуцирует в нетождественный автоморфизм, что противоречит определению группы . Значит, , что и требовалось. Таким образом:

Лемма 2.11. Если есть -разрешимая группа с верхним -рядом (2.2) и если - подгруппа Фраттини группы , то автоморфизмы группы , которые индуцированы трансформированиями элементами группы , представляют точно.

Следствие 2.12. .

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5193
Авторов
на СтудИзбе
434
Средний доход
с одного платного файла
Обучение Подробнее