85495 (Алгебра октав)

2016-07-29СтудИзба

Описание файла

Документ из архива "Алгебра октав", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85495"

Текст из документа "85495"

Оглавление

Введение

§1.Система аксиом алгебры октав, ее непротиворечивость и категоричность

1.1 Непротиворечивость системы аксиом алгебры октав

1.2 Категоричность системы аксиом алгебры октав

§2. Дополнительные сведения об октавах

2.1 Действия над октавами

2.2 Сопряженные октавы и их свойства

2.3.Некоторые тождества для октав

§3. Теорема Гурвица

3.1 Нормированные линейные алгебры

3.2 Теорема Гурвица

§4. Обобщенная теорема Фробениуса

Список литературы

Введение

Одному известному английскому философу-материалисту Д. Гартли принадлежало высказывание- "Поскольку слова могут быть сравнены с буквами, употребляемыми в алгебре, сам язык можно назвать одним из видов алгебры, и наоборот, алгебра есть не что иное, как язык, который особым образом приспособлен к объяснению величин всех родов… И вот, если все относящееся к языку имеет что-либо аналогичное в алгебре, то можно надеяться объяснить трудности, возникающие в теории языка, при посредстве соответствующих конкретных положений алгебры, в которой все ясно и признано всеми, кто сделал ее предметом своего изучения".

Предметом моего изучения является один из разделов не ассоциативной алгебры - алгебра октав.

Цель данной исследовательской работы- выявить сущность алгебры октав, а так же выявить, каким образом производятся действия над упорядоченной восьмеркой чисел, т.е. над (1, i, j, k, E, I, J, K).Не ассоциативные алгебры в настоящее время покрыты мифами экзотики. На самом деле ничего особенного, кроме потери ассоциативности, в них нет. Впрочем, эта потеря существенна. Если можно выразиться образно, то в космосе алгебр за ассоциативными уже ничего "живого" нет. Среди не ассоциативных алгебр наиболее известной является простейшая из них - алгебра октав. Или, иначе, четвертая алгебра Фробениуса, она же алгебра Кэли-Диксона.

Рассмотрим алгебраическое определение октавы.

Октавой - называется число гиперкомплексной алгебры, полученной некоммутативным удвоением по Кэли алгебры кватернионов:

Здесь обозначены:

O - октава,

Q - кватернионы,

E - мнимая единица. .

Октавы во многих случаях уместно рассматривать как существенное расширение кватернионов. Так же как и кватернионы, октавы не имеют делителей нуля, и квадрат модуля так же выражается простой квадратичной формой. Для них, так же как и для кватернионов, можно определить условное скалярное произведение. Которое и использовалось Фробениусом.

Объектом данной дипломной работы являются гиперкомплексные числа.

Для октав, как и для других гиперкомплексных чисел, определены операции сложения, вычитания, умножения и деления. Операции сложения и вычитания определены покомпонентно. Умножение октав определено таблицей произведения их мнимых единиц. Для выполнения деления производится замена операции деления на операцию умножения.

При использовании гиперкомплексных чисел и их исследовании часто встречается операция сопряжения.

Для октав определены две операции сопряжения - алгебраическое и векторное. Два других сопряжения - дуальное и скалярное не применимы в силу отсутствия в строении октав скалярной и дуальной мнимых единиц. При этом векторное и алгебраическое сопряжения совпадают. Октава, сопряженная заданной, образуется сменой знаков у компонент при всех мнимых единицах. Или, если ,обозначить октаву покомпонентно как

,

то сопряженная ей октава будет иметь вид:

.

§1. Система аксиом алгебры октав, ее непротиворечивость и категоричность

Определение. Алгеброй октав называется алгебра , если:

I. Алгебра - альтернативная линейная алгебра;

II. Тело кватернионов есть подтело алгебры ;

III. е2 = -1 и е ≠ i, е ≠ j, е ≠ k;

IV.Всякая подалгебра альтернативной линейной алгебры , содержащая тело кватернионов и элемент е, совпадает с алгеброй .

1.1 Непротиворечивость системы аксиом алгебры октав

Теорема 1. Система аксиом алгебры октав непротиворечива. Для доказательства непротиворечивости сформулированной выше системы аксиом построим следующую модель. Составим декартово произведение K x K = {(u,v)|u K v K}, где К - множество кватернионов. По определению, (u1;v1) = (u2;v2) u1 = u2 v1 = v2.

Во множестве К х K определим операции сложения и умножения по правилам:

(u1;v1) + (u2;v2) = (u1 + u2 ; v1 + v2);

(u1;v1) * (u2;v2) = (u1u2 - v2v1 ; v2 u1 + v1 ū2).

Перейдем к проверке выполнения аксиом на построенной модели. Покажем, что алгебра есть альтернативная линейная алгебра.

Сначала покажем, что (К x К, +) есть абелева группа.

1) ((u1;v1) + (u2;v2)) + (u3;v3) = (u1 + u2 ; v1 + v2) + (u3; v3) = ((u1 + u2) + u3; (v1 + v2) + v3) = (u1 +( u2 + u3); v1 + (v2 + v3)) = ((u1; v1) + (u2+ u3; v2+ v3) = (u1; v1) + ((u2; v2) + (u3; v3)),

т.е. сложение в (К х K, +) ассоциативно.

2) (u1; v1) + (u2; v2) = (u1 + u2 ; v1 + v2) = (u2 + u1; v2 + v1) = (u2; v2) + (u1; v1),

т.е. сложение в (К х K, +) коммутативно.

3) Решим уравнение

(u; v) + (x; y) = (u; v);

(u+ x; v+ y) = (u; v) u+ x = u^ v+ y= v ; x = 0, y = 0 ,т.е. (x; у) = (0;0).

Следовательно, нейтральным элементом в (К х K, +) является пара (0; 0). Обозначим (0; 0) = 0U.

4) Решим уравнение

(u; v) + (x; y) = (0; 0):

(u+ x; v+ y) = (0; 0) u+ x = 0^ v+ y= 0 x = - u ^ y = - v, т.е. (x; у) = (- u; - v) или -(u; v) = (- u; - v).

Из 1) ,4) следует, что алгебра (К х K, +) есть абелева группа. Покажем, что алгебра (К х K, +, .) есть кольцо, но не ассоциативное и не коммутативное.

5) Покажем, что умножение в дистрибутивно относительно сложения как слева, так и справа.

С одной стороны:

((u1; v1) + (u2; v2)) (u3; v3) = (u1 + u2 ; v1 + v2) (u3; v3) = ((u1 + u2) u3 - 3(v1 + v2); v3(u1+u2)+ (v1 + v23) = (u1 u3 + u2 u3 - 3v1 - 3v2; v3u1+ v3u2+ v1 ū3 + v2ū3).

С другой стороны:

(u1; v1) (u3; v3) + (u2; v2) (u3; v3) = (u1u3 - 3v1; v3u1 + v1ū3)+(u2 u3 - 3v2; v3u2+ v2ū3)=(u1 u3 - 3v1 + u2 u3 - 3v2; v3u1 + v1ū3 + v3u2+ v2ū3).

Сопоставляя правые части полученных равенств, замечаем, что они равны. Следовательно,

((u1; v1) + (u2; v2)) (u3; v3) = (u1; v1) (u3; v3) + (u2; v2) (u3; v3),

т.е. умножение в дистрибутивно справа относительно сложения.

Аналогично устанавливается равенство:

(u3; v3) ((u1; v1) + (u2; v2)) = (u3; v3) (u2; v2) + (u3; v3) (u1; v1).

Действительно, с одной стороны:

(u3; v3) ((u1; v1) + (u2;v2)) = (u3; v3) v (u2+ u1 ; v1 + v2) = (u3 (u1 + u2); ( )v3;

(v1+ v2)u3+ v3( ))= (u3 u1 + u3u2 - 1v3 - 2v3; v1 u3 + u2 u3+ v3ū1+ v3ū2);

с другой стороны:

(u3; v3) (u1; v1) +(u3; v3) (u2; v2) = (u3 u1 - 1v3; v1 u3 + v3ū1)+ (u3 u2 - 2v3; v2 u3 + v3ū2)= (u3 u1 - 1v1 + u3 u2 - 2v3; v1 u3 + v3ū1 + v2 u3 + v3ū2).

Сопоставляя правые части полученных равенств, замечаем, что они равны. Следовательно, умножение в дистрибутивно слева относительно сложения .

6) Покажем, что умножение в не ассоциативно.

Действительно, с одной стороны:

((u1; v1) (u2; v2)) (u3; v3) = (u1 u2 - 2v1; v2 u1 + v1 ū2) (u3; v3) = ((u1 u2 - 2v1)u3 - 3(v2 u1 + v1ū2);

v3(u1 u2 - 2v1) - (v2 u1 + v1ū2) ū3) = (u1 u2 u3 - 2v1u3 - 3v2 u1 - 3v1ū2; v3u1u2 - v3 2v1 - v2 u1 ū3 - v1ū2 ū3).

С другой стороны:

(u1; v1) ((u2; v2) (u3; v3)) = (u1; v1) (u2u3 - 3v2; v3u2 + v2ū3) = (u1 (u2u3 - 3v2) – v1;

v1 + (v3u2 + v2ū3) u1) = (u1u2u3 - u1 3v2 v1 - u3 2v1; v1 - v1 2v3 + v3u2 u1 + v2ū3 u1).

Из сопоставления правых частей этих равенств следует, что

((u1; v1) (u2; v2)) (u3; v3) ≠ (u1; v1) ((u2; v2) (u3; v3))

т.е. умножение в не ассоциативно.

7) Рассмотрим произведения:

(u1;v1) (u2;v2) = (u1u2 - 2v1 ; v2 u1 + v1 ū2);

(u2;v2) (u1;v1) =(u2u1 - 1v2 ; v1 u2 + v2 ū1).

Сравнивая правые части этих равенств, убеждаемся, что

(u1;v1) (u2;v2) ≠ (u2;v2) (u1;v1)

т.е. умножение в не коммутативно.

8) Покажем, что имеет место равенство

((u1; v1) (u2; v2)) (u2; v2) = (u1; v1) ((u2; v2) (u2; v2))

Преобразовав левую сторону этого равенства, получаем:

((u1; v1) (u2; v2)) (u2; v2) = (u1 u2 - 2v1; v2 u1 + v1 ū2) (u2; v2) = ((u1 u2 - 2v1)u2 - 2(v2 u1 + v1ū2);

v2(u1 u2 - 2v1) - (v2 u1 + v1ū2) ū2) = (u1 u2 u2 - 2v1u2 - 2v2 u1 - 2v1ū2; v2u1u2 - v2 2v1 - v2 u1 ū2 - v1 ) = (u1 u2 u2 - 2v1 (u2 + ū2) – |v2|2 u1; v2u1 (u2 + ū2) - v1 - |v2|2v1) .

Преобразовав правую сторону этого равенства, получаем:

(u1; v1) ((u2; v2) (u2; v2)) = (u1; v1) (u2 u2 - 2v2; v2 u2 + v2 ū2) = (u1(u2 u2 - 2v2) –( )v1;

v1 ( ) + (v2 u2 + v2 ū2) u1) = (u1u2 u2 - u1 2v2 v1 – u2 2v1;

v1 - v1 2v2 + v2 u2 u1+ v2 ū2 u1) = (u1 u2 u2 - (u2 + ū2) 2v1 – u1|v2|2; (u2 + ū2) v2u1 + v1 - v1|v2|2).

Здесь следует учитывать, что 2v2 = v2 2 = |v2|2 и u2 + ū2 - действительные числа. Сравнивая правые части полученных равенств, убеждаемся, что они совпадают с точностью до порядка слагаемых. Следовательно, равенство 8) справедливо.

9) Покажем, что имеет место равенство

(u2; v2) ((u2; v2) (u1; v1)) = ((u2; v2) (u2; v2)) (u1; v1).

Преобразовав левую сторону этого равенства, получаем:

(u2; v2) ((u2; v2) (u1; v1)) = (u2; v2) (u2u1 - 1v2; v1 u2 + v2 ū1) = (u2(u1 u2 - 2v1) – v2;

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
440
Средний доход
с одного платного файла
Обучение Подробнее