85495 (Алгебра октав), страница 2

2016-07-29СтудИзба

Описание файла

Документ из архива "Алгебра октав", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85495"

Текст 2 страницы из документа "85495"

(v1 u2 - v2 ū1) u2 + v2 ) = (u2u1 u2 - u2 1v2 v2 - u1 2v2; v1u2u2 + v2 ū1 u2 + v2 - v2 2v1) = (u2u1 u2 - u1 |v2|2 - (u2 + ū2) 1v2; v1u2u2 + v2 ū1(u2 + ū2) - |v2|2 v1).

Преобразовав правую сторону этого равенства, получаем:

((u2; v2) (u2; v2)) (u1; v1) = (u2 u2 - 2v2; v2 u2 + v2 ū2) (u1; v1) = ((u2 u2 - 2v2) u1 - 1(v2 u2 + v2 ū2);

v1(u2 u2 - 2v2) + (v2 u2 + v2 ū2) ū1) = (u2 u2 u1- 2v2 u1 - 1v2 u2 - 1v2 ū2; v1u2 u2 - v1 2v2 + v2 u2 ū1 + v2 ) = u2 u2 u1 - 1v2(u2 + ū2) - |v2|2u1; v1u2 u2 - v1 |v2|2+ v2 ū1 (u2+ ū2).

Сравнивая правые части полученных равенств, убеждаемся, что они совпадают с точностью до порядка слагаемых. Следовательно, равенство 9 справедливо.

Из равенств 8) и 9) следует, что умножение в альтернативно.

10) Для определения правого нейтрального элемента (единицы) относительно операции умножения в решим уравнение:

(u; v) (x; y) = (u; v),

в котором и и v одновременно не равны 0, так как (0; 0) = 0и и это уравнение будет иметь любое решение. Пусть u ≠ 0. Тогда:

(u; v) (х; у) = (u; v) (хu - y; уи + v ) = (и; v)

Умножим обе части первого уравнения этой системы слева на u-1= ,откуда:

(u-1 u) x = u-1 v+ u-1u x = v =1+ уи.

Подставим полученное значение во второе уравнение системы:

v(1+ уи) + уи = v v+ v уи+ уи = v уи+уи=0 ( +1)уи=0,

откуда при u ≠ 0 следует, что у = 0. Тогда = 0 и из первого уравнения системы

их = и следует, что х = 1. Итак, пара (х; у) = (1; 0) является правым единичным элементом в .

В случае, если и = 0, v ≠ 0, второе уравнение .системы имеет вид v = v, откуда сразу х = 1, а из первого уравнения системы у = 0, т.е. приходим к тому же решению.

Для определения левого нейтрального элемента (единицы) относиnельно операции умножения в решим уравнение:

(х; у) (u; v) = (u; v),

в котором опять и и v одновременно не считаем равными 0, так как (0; 0) = 0U и это уравнение будет иметь любое решение. Пусть опять u ≠ 0. Тогда:

(х; у) (и; v) = (и: v) (хи - y; vх - уū) = (и; v)

Умножим обе части первого уравнения этой системы справа на u-1= , откуда:

x(u u-1) = y + u*u-1 x = 1+ 2 yū,

Подставим полученное значение х во второе уравнение системы:

v(1+ 2 yū) + уū= v v + 2 v yū + уū= v yū+ уū= 0 ( + 1)уū =0,

откуда при u ≠ 0 следует, что у = 0 и из первого уравнения системы хu = и следует, что х = 1. Итак, пара (х; у) = (1; 0) является и левым единичным элементом в . Обозначим (1; 0) = 1U,

11) Для определения правого симметричного для (u; v) элемента решим уравнение:

(u; v) (х: у) = (1; 0) (их - v; уи+ v ) = (1; 0)

Умножим обе части первого уравнения этой системы слева на u-1= 2, откуда:

(u-1 u) x = u-1 v + u-1 x = 2+ 2 v = 2 + 2 yu.

Подставим полученное значение во второе уравнение системы:

v + + уи= 0 2 + 2 v yu + уи= 0 (|u|2 + |v|2) yu = - vu (|u|2 + |v|2) y = - v,

откуда

у = - .

Тогда из второго уравнения системы

v - u =0 v - =0 = x= .

Итак, пара

(x; y) = ; -

является правым обратным элементом для элемента (u; v) в .

Для определения левого симметричного элемента для элемента (u; v) относительно операции умножения в решим уравнение:

(х; у) (u; v) = (1; 0),

в котором опять и и v одновременно не считаем равными 0. Пусть опять и ≠ 0. Тогда:

(х; у) (u; v) = (1; 0) (xu - y; vx + yū) = (1; 0)

Умножим обе части первого уравнения этой системы справа на u-1= 2 откуда:

x (u u-1) = y 2 + 2 x = 2 ( yū + ū).

Подставим полученное значение х во второе уравнение системы:

v 2( yū + + ū) + yū = 0 (|u|2 + |v|2) yū = - vū

откуда при ū ≠ 0 следует, что у = - . и, подставив это значение у в первое уравнение системы, получаем

xu - = 1,

откуда следует, что

xu= 1 - = .

Умножим это равенство справа на u-1= , тогда

x = * =

Итак, пара

(x; y) = ; -

является и левым обратным элементом для элемента (u; v) в . Обозначим его (u, v)-1.

Левый и правый обратные элементы для (u; v) совпадают и, следовательно, каждый ненулевой элемент обратим в .

Из 1)-11) следует, что алгебра есть альтернативная линейная алгебра с делением и единицей, т.е. в данной модели первая аксиома полностью выполняется.

Проверим выполнение второй аксиомы на построенной модели.

Пусть U1 = {(u; 0)| u K}. Ясно, что U1 K x K.

Покажем, что множество U1 замкнуто относительно введенных ранее операций сложения и умножения:

(u1, 0) + (u2, 0) = (u1 + u2: 0 + 0) = (u1 + u2: 0) U1;

(u1, 0) (u2, 0) = (u1 u2 0; 0 u1 + 0 ū2) = (u1 u2: 0) U1.

Далее:

- (u; 0) = (- u; - 0) = ( - u; 0) U1;

(u; 0)-1 = = U1,

откуда следует, что есть под тело алгебры , .

Покажем, что изоморфно телу кватернионов . Для этого рассмотрим отображение f : U1 → K такое, что ( (u; 0) є U1) f ((u; 0)) = u, т.е. паре (и;0) ставит в соответствие кватернион и. Имеем:

f ((u1; 0) + (u2; 0)) = f ((u1 + u2: 0)) = u1 + u2 = f ((u1; 0)) + f ((u2; 0));

f (- (u; 0)) = f (( - u; 0)) = - u = - f ((u; 0));

f ((u1; 0) (u2; 0)) = f ((u1 u2: 0)) = u1 u2 = f ((u1; 0)) f ((u2; 0));

f ((u; 0)-1) = f (( ; 0)) = ; 0 = u-1 = f ((u; 0)) -1,

откуда следует, что отображение f является гомоморфным отображением алгебры в тело кватернионов. Это отображение биективно, так как

f ((u1; 0)) = f ((u2; 0)) u1 = u2 1; 0) = (и2; 0) и f (U1) = К.

Следовательно, отображение f есть изоморфизм тела на тело кватернионов (К, +, .), т.е. тело изоморфно телу кватернионов. В этом случае мы можем рассматривать тело как лишь другую модификацию тела кватернионов, а пару (u;0) отождествлять с кватернионом и. А так как есть подтело алгебры , то и изоморфное ему тело кватернионов является подтелом алгебры .

Проверим выполнение третьей аксиомы. Для этого возьмем пару (0; 1). Имеем:

(0; 1)2 = (0; 1) (0; 1) = (0 0 - 1; 1 0+1 ) = (-1; 0) = -(1; 0) = -(1; 0) = - 1.

С другой стороны:

(0; i) ≠ (i; 0) = i; (0: 1) ≠ (j; 0) = j; (0; k) ≠ (k; 0) = k.

Обозначим: (0; 1) = е. Следовательно, на построенной модели выполняется и третья аксиома.

Из проверки второй и третьей аксиом следует, что любой элемент (и; v) , представим в виде u + ve, где и, v є К и е2 = -1. Действительно,

(u; v) = (u; 0) + (0: v) = (u; 0) + (v; 0) * (0; 1) = и + ve.

Проверим выполнение четвертой аксиомы. Пусть подалгебра алгебры , содержащее в себе тело кватернионов и элемент е. Ясно, что U/ К х К. Если мы покажем, что К х K U/, то тем самым совпадает с . Так как каждый элемент алгебры имеет вид u+ve, где и, v К. е2 = - 1, то u + vj U/, так как и, v К U/, e U/ и - альтернативная алгебра (а, следовательно, замкнута относительно сложения и умножения). Итак, К х K U/, откуда U/ = К х K и, следовательно, имеет место выполнение четвертой аксиомы.

Так как на построенной модели выполняются все четыре сформулированные выше аксиомы алгебры октав, то эта система аксиом алгебры октав непротиворечива.

Мы показали, что любая октава представима в виде u+ve. где и, v К. Пусть

u = a+bi+cj+dk, v = A+Bi+Cj+Dk, a,b,c,d, a,b,c,d R.

Тогда,

и + vе = a+bi+cj+dk + (A+Bi+Cj+Dk)e = a+bi+cj+dk+ Ae+B(ie)+C(je)+D(ke).

Вычислим

ie = (i; 0) (0; 1) = (i 0 - 0; 1 i + 0 ) = (0; i);

je = (j; 0) (0; 1) = (j 0 - 0; 1 j + 0 ) = (0; j);

ke = (k; 0) (0; 1) = (k 0 - 0; 1 k + 0 ) = (0; k),

откуда следует, что ie, je, ke отличны друг от друга и от предыдущих мнимых единид i, j, k, e.

Покажем, что (ie)2 = (je)2 = (ke)2 = -1. Действительно,

(ie)2 = (i; 0) (i; 0) = (i i - 0; 0 i + 0 ī) = (-1; 0) = -1;

(je)2 = (j; 0) (j; 0) = (j j - 0; 0 j + 0 ī) = (-1; 0) = -1;

(ke)2 = (k; 0) (k; 0) = (k k - 0; 0 k + 0 ī) = (-1; 0) = -1.

Следовательно, ie, je, ke можно выбрать в качестве новых мнимых единиц, обозначив их соответственно iе = I, je = J. ke = К и октаву w записать в виде

w = a+bi+cj+dk+ Ae+BI+CJ+DK,

где a,b,c,d, a,b,c,d R.

Эту форму записи октавы назовем алгебраической формой. Обозначим КхK=U и назовем U алгеброй октав.

1.2 Категоричность системы аксиом алгебры октав

Теорема 2. Система аксиом алгебры октав категорична.

Пусть (U, +, ., e) и (U1, , , e1 ) - две модели алгебры октав и e2 = -1, e21 = Ө1.

Рассмотрим отображение Ф : U → U такое, что

Ф (u+ve) = u v e1, u,v К.

Покажем, что Ф - гомоморфное отображение первой модели на вторую модель.

Пусть w1 = u1+v1e и w2 = u2+v2e. Тогда:

Ф(w1+ w2) = Ф((u1+v1e) + (u2+v2e)) = Ф((u1+u2)+(v1+v2)e) = (u1+u2) (v1+v2) e1 = (u1 v1 e1 ) (u2 v2 e1) = Ф(u1+v1e) Ф(u2+v2e) = Ф(w1) Ф(w2);

Ф(w1 w2) = Ф((u1+v1e) (u2+v2e)) = Ф((u1u2 - 2v1)+(v2u1 + v1ū2)e) = (u1u2 - 2v1) (v2u1 + v1 ū2) e) =(u1 u2 Ө 2 v1) (v2u1 v1 ū2) e) =(u1 v1 e1) ( u2 v2 e1) = Ф(u1+v1e) Ф(u2+v2e) = Ф(w1) Ф(w2);

Ф(-w) = Ф (-(u+ve)) = Ф (-u -ve) = ӨuӨv e1 = Ө(u v e1) = ӨФ(u+ve)= ӨФ(w);

Ф(w-1)=Ф((u+ve)-1)=Ф( Ө e)= ( Ө e) = Ө e = (u v e1)-1 = (Ф(u+ve)Ө1) = (Ф(w)) Ө1.

Следовательно, отображение Ф есть гомоморфное отображение алгебры в (U1, , , e1 ).

Покажем, что отображение Ф инъективно:

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5193
Авторов
на СтудИзбе
434
Средний доход
с одного платного файла
Обучение Подробнее