Ответы - final (Ответы на экзамен 1), страница 6

2013-09-12СтудИзба

Описание файла

Файл "Ответы - final" внутри архива находится в папке "otvety_v1". Документ из архива "Ответы на экзамен 1", который расположен в категории "". Всё это находится в предмете "материалы и элементы электронной техники" из 5 семестр, которые можно найти в файловом архиве НИУ «МЭИ» . Не смотря на прямую связь этого архива с НИУ «МЭИ» , его также можно найти и в других разделах. Архив можно найти в разделе "к экзамену/зачёту", в предмете "материалы и элементы электронный техники" в общих файлах.

Онлайн просмотр документа "Ответы - final"

Текст 6 страницы из документа "Ответы - final"

Pi = A1f(U-Ui) 3

где A1 — постоянный коэффициент; f — частота; U — приложенное напряжение; Ui — напряжение, соответствующее началу ионизации.

Формула справедлива при (U>Ui и линейной зависимости tgδ от Е). Значение ионизирующего напряжения Ui зависит от давле­ния газа, поскольку развитие ударной ионизации молекул связано с длиной свободного пробега электронов. С увеличением давления газа выше атмосферного значение напряжения начала ионизации возрастает.

Ионизационные потери являются дополнительным механизмом ди­электрических потерь для твердого диэлектрика, содержащего газо­вые включения. Ионизация газа в таких включениях особенно ин­тенсивно происходит при радиочастотах. На рис. 6.17 показано влияние газовых включений на характер tgδ с увеличением напряже­ния. При возрастании напряжения свы­ше Ui (начало ионизации) tgδ растет. При U > Ui когда газ во включениях уже ионизирован, требуется меньшая энергия на дальнейшее развитие про­цесса и tgδ уменьшается

Кривую tgδ = F(U) часто называют кривой ионизации. При высоких часто­тах ионизация и потери в газах воз­растают настолько, что это явление может привести к разогреву и разру­шению изделий с газовой изоляцией, если напряжение превышает ионизационное значение.

Возникновение ионизации газа, заполняющего поры в твердой изо­ляции, нередко также приводит к ее разрушению. Ионизация воздуха сопровождается образованием озона и окислов азота, что в одних случаях вызывает химическое разрушение органической изоляции, содержащей газовые включения, в других — цепную реакцию окис­ления, инициированную бомбардировкой материала заряженными час­тицами.

Диэлектрические потери в твердых диэлектриках. Диэлектриче­ские потери в твердых диэлектриках зависят от структуры материалов. Различные твердые вещества имеют разный состав и строение; в них возможны все виды диэлектрических потерь.

1. Диэлектрические потери в веществах с молекулярной структурой зависят от вида молекул.

Диэлектрики, имеющие молекулярную структуру с неполярными молекулами и не содержащие примесей, обладают ничтожно малыми ди­электрическими потерями. К таким диэлектрикам относятся сера, це­резин, неполярные полимеры — полиэтилен, политетрафторэтилен, полистирол (см. гл. 7) и др. Указанные вещества в связи с их малыми потерями применяют в качестве высокочастотных диэлектриков. Твердые диэлектрики, состоящие из полярных молекул, представ­ляют собой главным образом органические вещества, широко исполь­зуемые в технике: полярные полимеры — эпоксидные компаунды, кремнийорганические и феноло-формальдегидные смолы, полиамиды (капрон и т. п.), полиэтилентерефталат (лавсан), гетинакс и др. Все они благодаря присущей им дипольно-релаксационной поляризации имеют большие потери, особенно при радиочастотах.

2. Диэлектрические потери в веществах с ионной структурой зависят от особенностей упаковки ионов в решетке.

В веществах с кристаллической структурой и плотной упаковкой ионов в отсутствие примесей, искажающих решетку, диэлектрические потери весьма малы. При повышенных температурах в этих веществах обнаруживаются потери на электропроводность весьма малы.. К веществам данного типа относятся многочисленные кристаллические неорганические сое­динения, имеющие большое значение в современном производстве электротехнической керамики, например, корунд, входящий в состав ультрафарфора. Примером соединений такого рода является также каменная соль, чистые кристаллы которой обладают ничтожными потерями; малейшие примеси, искажающие решетку, резко увеличива­ют диэлектрические потери.

К диэлектрикам, имеющим кристаллическую структуру с неплот­ной упаковкой ионов, относится ряд кристаллических веществ, харак­теризующихся релаксационной поляризацией, вызывающей повышен­ные диэлектрические потери. Многие из них входят в состав керами­ческих масс, изоляторного фарфора, огнеупорной керамики и т. д.

Диэлектрические потери в квазиаморфных веществах с ионной структуройнеорганических стеклах — отличаются некоторыми осо­бенностями. В стеклах за релаксацию ответственны слабосвязанные ионы, совершающие перескоки из одной ячейки пространственной структурной сетки в другу



б)

Рис. 6.18. Частотная и температурная зависимости тангенса угла диэлектрических потерь для неорганического стекла:

1 — потери на электропроводность;

2 — релаксационные потери;

3— суммарные потери

Потенциальные барьеры, ограничиваю­щие движение слабосвязанных ионов, неодинаковы вследствие локаль­ных неоднородностей структуры стекла. Поэтому релаксационные по­тери в стеклах определяются широким набором времен релаксации, что приводит к расширению и некоторому сглаживанию максимумов в температурной и частотной зависимостях тангенса угла диэлектричес­ких потерь (рис. 6.18). Чем больше набор времени релаксации, тем меньше значение релаксационного максимума, так как уменьшается число релаксаторов каждого типа. Сглаженные максимумы релаксаци­онных потерь могут в значительной мере маскироваться потерями на электропроводность и не проявляться в явном виде.

При очень высоких частотах, приближающихся к частотам собст­венных колебаний ионов, в стеклах возможны также резонансные потери.

11. Относительная диэлектрическая проницаемость ε. Связь комплексной ε*=ε'- jε" и tgδ.

Диэлектрическая проницаемость ε количественно характеризует спообность диэлектрика поляризоваться в электрическом поле, а также оценивает степень его полярности; ε является константой диэлектриче­ского материала при данной температуре и частоте электрического на­пряжения и показывает, во сколько раз заряд конденсатора с диэлектри­ком больше заряда конденсатора тех же размеров с вакуумом.

Диэлектрическая проницаемость определяет величину электри­ческой емкости изделия (конденсатора, изоляции кабеля и т.п.). Для плоского конденсатора электрическая емкость С, Ф, выражается формулой

С = εεоS/h, (2.15)

где S — площадь измерительного электрода, м2; h — толщина ди­электрика, м.

Из формулы (2.15) видно, что чем больше величина ε используе­мого диэлектрика, тем больше электрическая емкость конденсатора при тех же габаритах.

В свою очередь, электрическая емкость С является коэффициен­том пропорциональности между поверхностным зарядом Qк, накоп­ленным конденсатором, и приложенным к нему электрическим на­пряжением U:

Qк = CU = Uεоε S / h. (2.16)

Из формулы (2.16) следует, что электрический заряд Qк, накоп­ленный конденсатором, пропорционален величине ε диэлектрика. Зная Qк и геометрические размеры конденсатора, можно определить ε диэлектрического материала для данного напряжения.

****************************************************************

Диэлектрическая проницаемость ε — величина безразмерная, и у любого диэлектрика она больше еди­ницы; в случае вакуума ε = 1. Плотность заряда на электродах конденсатора с диэлек­триком в ε раз больше плотности заряда на электродах конденсатора с вакуумом, а напряженности при одинаковых напряжениях для обо­их конденсаторов одинаковы и зависят только от величины напря­жения U и расстояния между электродами (Е = U/h).

Кроме относительной диэлектрической проницаемости ε разли­чают абсолютную диэлектрическую проницаемость εа, Ф/м,

εа =εεо, (2.19)

которая не имеет физического смысла но используется в электротех­нике.

Для диэлектриков с потерями можно также использовать комплексную диэлектри­ческую проницаемость ε, которая выражается формулой

ε = ε'-jε", (2.20)

где ε' и ε" — действительная и мнимая части комплексной диэлектрической прони­цаемости ε; j — коэффициент, обозначающий мнимую компоненту (j = √-l). Мнимая часть представляет собой коэффициент потерь ε" (ε" = ε'tgδ, где tgδ — тангенс угла диэлектрических потерь.

р ис 2.3. Частотные зависимости ε/, ε//, к и tgδ диэлектрика с релаксационными видами поляризации

В слабых электрических полях у линейных изотропных диэлектриков вектор электрического смещения (электрической индукции) D незначительно и линейно за­висит от вектора поля Е, действующего в диэлектрике (D = εεоЕ). При этом диэлек­трическая проницаемость ε остается величиной постоянной и независимой от напря­женности поля Е. (Для анизотропных диэлектриков направления D и Е не совпадают, поэтому у них диэлектрическая проницаемость является тензором.)

В сильных электрических полях у линейных изотропных диэлектриков линейная зависимость D(E) нарушается и диэлектрическая проницаемость ε становится величи­ной, зависимой от квадрата напряженности поля Е2

ε(Е) = dD/dE = ε+ЗαЕ2, (2.21)

где α — второе слагаемое в разложении D по степеням Е

Нелинейная зависимость ε(Е) и D(E) у диэлектриков имеет важное значение не только в ряде вопросов теории диэлектрической поляризации, но и для их практического применения.

13. Сегнетоэлектрики. Температура Кюри.

Активными (управляемыми) диэлектриками называют материалы, свойствами которых можно управлять в широких пределах с помо­щью внешнего энергетического воздействия: напряженности элек­трического или магнитного поля, механического напряжения, тем­пературы, светового потока и др. В этом их принципиальное отличие от обычных (пассивных) диэлектриков.

Из активных диэлектриков изготавливают активные элементы электронных приборов. Особенностью свойств этих материалов яв­ляются такие явления, как сегнетоэлектричество, электретный, пье­зоэлектрический и электрооптический эффекты, инжекционные токи и др., послужившие основой для разработки диэлектрических приборов. Ниже рассматриваются особенности строения и свойств некоторых активных диэлектриков, нашедших наиболее широкое применение.

7.15.1. Сегнетоэлектрики

Сегнетоэлектрики в отличие от обычных (пассивных) диэлектри­ков обладают регулируемыми электрическими характеристиками. Так, например, диэлектрическую проницаемость сегнетоэлектриков с помощью электрического напряжения можно изменять в широких пределах. Характерная особенность сегнетоэлектриков заключется в том, что у них наряду с электронной, ионной и релаксационными видами поляризации, вызываемыми внешним электрическим полем наблюдается самопроизвольная (спонтанная) поляризация, под дей­ствием которой эти диэлектрики приобретают доменную структуру и характерные сегнетоэлектрические свойства.

Самопроизвольная поляризация проявляется в отсутствие элек­трического поля в определенном интервале температур ниже точки Кюри Тк вследствие изменения строения элементарной ячейки кри­сталлической решетки и образования доменной структуры, что, в свою очередь, вызывает у сегнетоэлектриков:

  • необычно высокую диэлектрическую проницаемость (до де­сятков тысяч);

  • нелинейную зависимость поляризованности, а следовательно,и диэлектрической проницаемости от напряженности приложенного
    электрического поля;

  • резко выраженную зависимость диэлектрической проницаемости от температуры;

  • наличие диэлектрического гистерезиса.

Указанные выше свойства были детально изучены И.В.Курчатовым и П.П.Кобеко у сегнетовой соли (натриево-калиевая соль винной кислоты NaKC4H4O6 • 4Н2О), поэтому вещества, обладающие аналогичными свойствами, называют сегнетоэлектриками. Важней­ший для практического применения сегнетоэлектрик — титанат бария — открыл в 1944 г. Б.М. Бул. Ряд сегнетоэлектриков был открыт Г.А. Смоленским и др.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее